10 research outputs found

    Serological and molecular capsular typing, antibiotic susceptibility of Streptococcus pneumoniae isolates from invasive and non-invasive infections

    No full text
    Streptococcus pneumoniae causes life threatening infections and necessitate for impediment and controlling disease; to conquer this, information is needed about serotype distribution and patterns of antibiotic resistance. The present study was to determine the serotype distribution of S. pneumoniae isolated from the entire age group individual and to correlate this distribution with susceptibility. Cases of pneumococcal infections have been reviewed for serotyping and antibiotic susceptibility. Out of 117 pneumococcal isolates 45 (39%) were penicillin-resistant, 84 (72%) were erythromycin-resistant and 100% were co-trimoxazole resistant. The most frequently isolated serotypes were 23F, 19F, 14, 6B, 5, 6A, 19A and 9V. PCV7, PCV10 and PCV13 coverage was 68%, 79%, 87%, respectively. Similarly, there was similarity in PCV7 coverage for non invasive isolates (64.5%) and invasive isolates (72.2%). The study state that common pneumococcal serotypes were present in similar ways as reported in literature. A continuous survey of pneumococcal infected population is requirement and necessity for success of vaccination

    A prospective evaluation of synergistic effect of sulbactam and tazobactam combination with meropenem or colistin against multidrug resistant Acinetobacter baumannii

    No full text
    The present study evaluates the synergistic effect of sulbactam/tazobactam in combination with meropenem or colistin against multidrug resistant (MDR) Acinetobacter baumannii isolated from hospitalized patients from a tertiary care hospital in Saudi Arabia. During the study period, 54 multidrug and carbapenem-resistant isolates of A. baumannii isolates were collected from blood and respiratory samples of patients with ventilator-associated pneumonia or bacteremia. Microbroth checkerboard assay (CBA) and E-test were performed to look for synergistic interface of sulbactam and tazobactam with meropenem or colistin. All 54 MDR isolates of A. baumannii were resistant to carbapenem. Minimum inhibitory concentration [50/90] value against sulbactam, tazobactam, meropenem, colistin was found to be 64/128, 64/128, 64/256, and 0.5/1.0 respectively. Synergy was detected in more isolates with CBA compared to E-test. All four combinations showed significant synergistic bactericidal activity. However, the combination with colistin showed greater synergistic effect than combination with meropenem. Antagonism was not detected with any of the combinations and any method, but indifference was seen in tazobactam and colistin combination alone. A significant bactericidal effect was seen with sulbactam combination with meropenem or colistin in both methods. A combination therapy can be a choice of treatment. As colistin is known to exhibit nephrotoxicity, the combination of sulbactam and meropenem might be considered as an alternative antibiotic treatment for such multi- and extremely resistant bacteria. Yet, sample size is small in our study, so further well-designed in vitro and clinical studies on large scale should confirm our findings

    Prevalence of 16S rRNA methylase genes among β-lactamase-producing Enterobacteriaceae clinical isolates in Saudi Arabia

    Get PDF
    Background: Co production of 16S rRNA methylases gene and β-Lactamase gene among Enterobacteriaceae isolates conferring resistance to both therapeutic options has serious implications for clinicians worldwide. Methods: To study co existence of 16S rRNA methylases (armA, rmtA, rmtB, rmtC, rmtD, and npmA) and β-Lactamase (blaTEM-1, blaSHV-12, blaCTX-M-14) genes, we screened all phenotypic positive β-Lactamase producing enterobacteriaceae by polymerase chain reaction (PCR) targeting above genes. A total of 330 enterobacteriaceae strains were collected during study period out of that 218 isolates were identified phenotypically as β-Lactamase producers, which include 50 (22.9%) Escherichia coli; 92 (42.2%) Klebsiella pneumoniae, 44 (20.2%), Citrobactor freundii and 32 (14.7%) Enterobacter spp. Results: Among this 218, only 188 isolates harbored the resistant gene for β-Lactamase production. Major β-Lactamase producing isolates were blaTEM-1 type. 122 (56 %) isolates were found to produce any one of the 16S rRNA methylase genes. A total of 116 isolates co produced β-Lactamase and at least one 16S rRNA methylases gene Co production of armA gene was found in 26 isolates with rmtB and in 4 isolates with rmtC. The rmtA and rmtD genes were not detected in any of the tested isolates. Six isolates were positive for a 16S rRNA methylase gene alone. Conclusion: β-Lactamase producing isolates appears to coexist with 16S rRNA methylase predominantly armA and rmtB genes in the same isolate. We conclude the major β-Lactamase and 16S rRNA methylases co-producer was K. pneumoniae followed by E. coli. We suggest further work on evaluating other β-lactamases types and novel antibiotic resistance mechanisms among Enterobacteriaceae

    A Comparative Evaluation of a Novel Vaccine in APP/PS1 Mouse Models of Alzheimer’s Disease

    No full text
    Immunization against amyloid-beta-peptide (Aβ) has been widely investigated as a potential immunotherapeutic approach for Alzheimer’s disease (AD). With the aim of developing an active immunogenic vaccine without need of coadjuvant modification for human trials and therefore avoiding such side effects, we designed the Aβ1–42 vaccine (EB101), delivered in a liposomal matrix, that based on our previous studies significantly prevents and reverses the AD neuropathology, clearing Aβ plaques while markedly reducing neuronal degeneration, behavioral deficits, and minimizing neuroinflammation in APP/PS1 transgenic mice. Here, the efficacy of our immunogenic vaccine EB101 was compared with the original immunization vaccine cocktail Aβ42 + CFA/IFA (Freund’s adjuvant), in order to characterize the effect of sphingosine-1-phosphate (S1P) in the immunotherapeutic response. Quantitative analysis of amyloid burden showed a notable decrease in the neuroinflammation reaction against Aβ plaques when S1P was compared with other treatments, suggesting that S1P plays a key role as a neuroprotective agent. Moreover, EB101 immunized mice presented a protective immunogenic reaction resulting in the increase of Aβ-specific antibody response and decrease of reactive glia in the affected brain areas, leading to a Th2 immunological reaction
    corecore