126 research outputs found

    Stability of Transparent Spherically Symmetric Thin Shells and Wormholes

    Get PDF
    The stability of transparent spherically symmetric thin shells (and wormholes) to linearized spherically symmetric perturbations about static equilibrium is examined. This work generalizes and systematizes previous studies and explores the consequences of including the cosmological constant. The approach shows how the existence (or not) of a domain wall dominates the landscape of possible equilibrium configurations.Comment: 12 pages, 7 figures, revtex. Final form to appear in Phys. Rev.

    Theory of Magnetic Field Induced Spin Density Wave in High Temperature Superconductors

    Full text link
    The induction of spin density wave (SDW) and charge density wave (CDW) orderings in the mixed state of high TcT_c superconductors (HTS) is investigated by using the self-consistent Bogoliubov-de Gennes equations based upon an effective model Hamiltonian with competing SDW and d-wave superconductivity interactions. For optimized doping sample, the modulation of the induced SDW and its associated CDW is determined by the vortex lattice and their patterns obey the four-fold symmetry. By deceasing doping level, both SDW and CDW show quasi-one dimensional like behavior, and the CDW has a period just half that of the SDW along one direction. From the calculation of the local density of states (LDOS), we found that the majority of the quasi-particles inside the vortex core are localized. All these results are consistent with several recent experiments on HTS

    Expansion of Vortex Cores by Strong Electronic Correlation in La2−x_{2-x}Srx_xCuO4_4 at Low Magnetic Induction

    Full text link
    The vortex core radius \rv, defined as the peak position of the supercurrent around the vortex, has been determined by muon spin rotation measurements in the mixed state of \lscox for x=0.13x=0.13, 0.15, and 0.19. At lower doping (x=0.13 and 0.15), \rv(T) increases with decreasing temperature T, which is opposite to the behavior predicted by the conventional theory. Moreover, \rv(T\to0) is significantly larger than the Ginsburg-Landau coherence length determined by the upper critical field, and shows a clear tendency to decrease with increasing the doping x. These features can be qualitatively reproduced in a microscopic model involving antiferromagnetic electronic correlations.Comment: 6 pages, 4 figures, to be published in Phys. Rev.

    Faculty experiences and motivations in design thinking teaching and learning

    Get PDF
    Introduction: Design thinking (DT) is a creative, iterative approach to generating solutions that are desirable, feasible, and viable. Given its role in fostering creativity and innovation, a growing number of higher education instructors are teaching DT. Exploring how and what instructors know about DT and why they might teach it could provide critical insight into the ways in which DT is operationalized in higher education teaching and learning. Materials and methods: A convergent parallel mixed methods design was used for data collected from online surveys administered to faculty teaching DT. The survey included items about DT practices, outcomes from DT, demographic characteristics, and course characteristics. Five open-text survey items queried participants about their definition of DT, why they teach DT, and what additional outcomes they observed. Descriptive statistics were used to analyze quantitative items and thematic analysis was used to analyze qualitative items. Results: Participants (n = 49) represented various academic ranks, disciplines, types of institutions, and geographic locations. Analyses indicated clear congruence between quantitative and qualitative data. Definitions of DT aligned with well-known models of DT. Motivations for teaching DT included the promotion of personal development, DT proficiency, impact, and interpersonal skill development. Other positive student outcomes observed included increases in enthusiasm, self-awareness, empowerment, optimism, and a sense of belonging. Negative student outcomes included time constraints, teamwork conflicts, and student frustration. Conclusion: Faculty believe that DT leads to highly valuable social innovation skill sets for students. This cross-institutional, multi-disciplinary study provides critical insight into faculty experiences and motivations for teaching DT, offering various strategies for instructors and institutions interested in fostering the uptake of DT within higher education

    Neutron scattering study of the effects of dopant disorder on the superconductivity and magnetic order in stage-4 La_2CuO_{4+y}

    Full text link
    We report neutron scattering measurements of the structure and magnetism of stage-4 La_2CuO_{4+y} with T_c ~42 K. Our diffraction results on a single crystal sample demonstrate that the excess oxygen dopants form a three-dimensional ordered superlattice within the interstitial regions of the crystal. The oxygen superlattice becomes disordered above T ~ 330 K, and a fast rate of cooling can freeze-in the disordered-oxygen state. Hence, by controlling the cooling rate, the degree of dopant disorder in our La_2CuO_{4+y} crystal can be varied. We find that a higher degree of quenched disorder reduces T_c by ~ 5 K relative to the ordered-oxygen state. At the same time, the quenched disorder enhances the spin density wave order in a manner analogous to the effects of an applied magnetic field.Comment: 4 figures included in text; submitted to PR

    Effect of a magnetic field on the spin- and charge-density wave order in La1.45Nd0.4Sr0.15CuO4

    Full text link
    The spin-density wave (SDW) and charge-density wave (CDW) order in superconducting La1.45Nd0.4Sr0.15CuO4 were studied under an applied magnetic field using neutron and X-ray diffraction techniques. In zero field, incommensurate (IC) SDW order appears below ~ 40 K, which is characterized by neutron diffraction peaks at (1/2 +/- 0.134, 1/2 +/- 0.134, 0). The intensity of these IC peaks increases rapidly below T_Nd ~ 8 K due to an ordering of the Nd^3+ spins. The application of a 1 T magnetic field parallel to the c-axis markedly diminishes the intensity below T_Nd, while only a slight decrease in intensity is observed at higher temperatures for fields up to 7 T. Our interpretation is that the c-axis field suppresses the parasitic Nd^3+ spin order at the incommensurate wave vector without disturbing the stripe order of Cu^2+ spins. Consistent with this picture, the CDW order, which appears below 60 K, shows no change for magnetic fields up to 4 T. These results stand in contrast to the significant field-induced enhancement of the SDW order observed in superconducting La2-xSrxCuO4 with x ~ 0.12 and stage-4 La2CuO4+y. The differences can be understood in terms of the relative volume fraction exhibiting stripe order in zero field, and the collective results are consistent with the idea that suppression of superconductivity by vortices nucleates local patches of stripe order.Comment: 7 pages, 5 figure

    Checkerboard local density of states in striped domains pinned by vortices

    Get PDF
    Within a Green's function formalism we calculate the electronic structure around static extended magnetic and non-magnetic perturbations in a d-wave superconductor. In partucular, we discuss recent elastic neutron scattering and scanning tunneling experiments on High-T_c cuprates exposed to an applied magnetic field. A physical picture consisting of antiferromagnetic vortex cores operating as pinning centers for surrounding stripes is qualitatively consistent with the neutron data provided the stripes have the usual antiphase modulation. The low energy electronic structure in such a region reveals a checkerboard interference pattern consistent with recent scanning tunneling experiments.Comment: 5 pages, 4 figure

    Integrated chronological control on an archaeologically significant Pleistocene river terrace sequence: the Thames-Medway, eastern Essex, England

    Get PDF
    Late Middle Pleistocene Thames-Medway deposits in eastern Essex comprise both large expanses of Palaeolithic artefact-bearing river sands/gravels and deep channels infilled with thick sequences of fossiliferous fine-grained estuarine sediments that yield valuable palaeoenvironmental information. Until recently, chronological control on these deposits was limited to terrace stratigraphy and limited amino-acid racemisation (AAR) determinations. Recent developments in both this and optically stimulated luminescence (OSL) dating make them potentially powerful tools for improving the chronological control on such sequences. This paper reports new AAR analyses and initial OSL dating from the deposits in this region. These results will help with ongoing investigation of patterns of early human settlement. Using AAR, the attribution by previous workers of the interglacial channel deposits to both MIS 11 (Tillingham Clay) and MIS 9 (Rochford and Shoeburyness Clays) is reinforced. Where there are direct stratigraphic relationships between AAR and OSL as with the Cudmore Grove and Rochford Clays and associated gravels, they agree well. Where OSL dating is the only technique available, it seems to replicate well, but must be treated with caution since there are relatively few aliquots. It is suggested on the basis of this initial OSL dating that the gravel deposits date from MIS 8 (Rochford and Cudmore Grove Gravels) and potentially also MIS 6 (Dammer Wick and Barling Gravels). However, the archaeological evidence from the Barling Gravel and the suggested correlations between this sequence and upstream Thames terraces conflict with this latter age estimate and suggest that it may need more investigation

    Vortex structure in d-density wave scenario of pseudogap

    Full text link
    We investigate the vortex structure assuming the d-density wave scenario of the pseudogap. We discuss the profiles of the order parameters in the vicinity of the vortex, effective vortex charge and the local density of states. We find a pronounced modification of these quantities when compared to a purely superconducting case. Results have been obtained for a clean system as well as in the presence of a nonmagnetic impurity. We show that the competition between superconductivity and the density wave may explain some experimental data recently obtained for high-temperature superconductors. In particular, we show that the d-density wave scenario explains the asymmetry of the gap observed in the vicinity of the vortex core.Comment: 8 pages, 10 figure

    Diffuse inverse Compton and synchrotron emission from dark matter annihilations in galactic satellites

    Full text link
    Annihilating dark matter particles produce roughly as much power in electrons and positrons as in gamma ray photons. The charged particles lose essentially all of their energy to inverse Compton and synchrotron processes in the galactic environment. We discuss the diffuse signature of dark matter annihilations in satellites of the Milky Way (which may be optically dark with few or no stars), providing a tail of emission trailing the satellite in its orbit. Inverse Compton processes provide X-rays and gamma rays, and synchrotron emission at radio wavelengths might be seen. We discuss the possibility of detecting these signals with current and future observations, in particular EGRET and GLAST for the gamma rays.Comment: 13 pages, 5 figure
    • …
    corecore