80 research outputs found

    Nariai, Bertotti-Robinson and anti-Nariai solutions in higher dimensions

    Full text link
    We find all the higher dimensional solutions of the Einstein-Maxwell theory that are the topological product of two manifolds of constant curvature. These solutions include the higher dimensional Nariai, Bertotti-Robinson and anti-Nariai solutions, and the anti-de Sitter Bertotti-Robinson solutions with toroidal and hyperbolic topology (Plebanski-Hacyan solutions). We give explicit results for any dimension D>3. These solutions are generated from the appropriate extremal limits of the higher dimensional near-extreme black holes in a de Sitter, and anti-de Sitter backgrounds. Thus, we also find the mass and the charge parameters of the higher dimensional extreme black holes as a function of the radius of the degenerate horizon.Comment: 10 pages, 11 figures, RevTeX4. References added. Published versio

    Equatorial circular orbits in the Kerr-de Sitter spacetimes

    Full text link
    Equatorial motion of test particles in the Kerr-de Sitter spacetimes is considered. Circular orbits are determined, their properties are discussed for both the black-hole and naked-singularity spacetimes, and their relevance for thin accretion discs is established.Comment: 24 pages, 19 figures, REVTeX

    Topological Charged Black Holes in High Dimensional Spacetimes and Their Formation from Gravitational Collapse of a Type II Fluid

    Full text link
    Topological charged black holes coupled with a cosmological constant in R2×XD2R^{2}\times X^{D-2} spacetimes are studied, where XD2X^{D-2} is an Einstein space of the form (D2)RAB=k(D3)hAB{}^{(D-2)}R_{AB} = k(D-3) h_{AB}. The global structure for the four-dimensional spacetimes with k=0k = 0 is investigated systematically. The most general solutions that represent a Type IIII fluid in such a high dimensional spacetime are found, and showed that topological charged black holes can be formed from the gravitational collapse of such a fluid. When the spacetime is (asymptotically) self-similar, the collapse always forms black holes for k=0,1k = 0, -1, in contrast to the case k=1k = 1, where it can form either balck holes or naked singularities.Comment: 14 figures, to appear in Phys. Rev.

    Matching Spherical Dust Solutions to Construct Cosmological Models

    Full text link
    Conditions for smooth cosmological models are set out and applied to inhomogeneous spherically symmetric models constructed by matching together different Lemaitre-Tolman-Bondi solutions to the Einstein field equations. As an illustration the methods are applied to a collapsing dust sphere in a curved background. This describes a region which expands and then collapses to form a black hole in an Einstein de Sitter background. We show that in all such models if there is no vacuum region then the singularity must go on accreting matter for an infinite LTB time.Comment: 13 pages, Revtex; to appear Gen. Rel. Gra

    Development of a superhydrophobic polyurethane-based coating from a two-step plasma-fluoroalkyl silane treatment

    Get PDF
    A method of achieving a superhydrophobic surface based upon a highly filled polyurethane (PU) paint coating has been demonstrated through the use of a combined oxygen/argon plasma pretreatment and a fluoroalkyl silane (FAS) final treatment. The combined plasma-FAS treated PU surface has been investigated and characterised using: field emission gun secondary electron microscope (FEG-SEM); X-ray photoelectron spectroscopy (XPS); energy-dispersive X-ray spectroscopy (EDX); water contact angle analysis (WCA); atomic force microscopy (AFM), and; Fourier transform infrared spectroscopy (FTIR). It was found that the oxygen/argon plasma treatment increased both the surface roughness (Ra) and surface free energy (SFE) of the PU paint coating from approximately 60-320 nm, and, from ~52 to ~80 mN/m respectively. It was also found that the plasma process created a multiscale roughened texture through the process of differential ablation between the PU polymer and the barium sulphate solid content, which is present in the paint as an extender, and other additives. In addition, the process also imparted favourable polar groups into the PU surface from the ionised and radical oxygen species in the plasma. When the FAS coating was subsequently applied to the PU without prior plasma treatment, there was a significant increases in water contact angles. This parameter increased from approximately 60°on untreated PU to around 130°with FAS applied. In this case, the SFE decreased to ~7.5 mN/m and showed 42.0 at% fluorine present as indicated by XPS. However, subsequently applying the FAS polymer after plasma pretreatment takes advantage of the known synergistic relationship that exists between surface roughness and low surface free energy coatings. The two processes combined to create superhydrophobicity with a surface that exhibited water contact angles up to 153.1°. With this optimised process, the apparent SFE was 0.84 mN/m with a more highly fluorinated surface present. In this case 47.2 at% surface fluorine was observed by XPS. In addition to changes in SFE, plasma treatment was also observed to alter levels of surface gloss and colour. After exposure to 600 s of plasma gloss levels are shown to reduce from values of from ~50 to ~21 (GU), with small but significant corresponding increases in the lightness and yellowness of the surface

    Fluorescent carbon dioxide indicators

    Get PDF
    Over the last decade, fluorescence has become the dominant tool in biotechnology and medical imaging. These exciting advances have been underpinned by the advances in time-resolved techniques and instrumentation, probe design, chemical / biochemical sensing, coupled with our furthered knowledge in biology. Complementary volumes 9 and 10, Advanced Concepts of Fluorescence Sensing: Small Molecule Sensing and Advanced Concepts of Fluorescence Sensing: Macromolecular Sensing, aim to summarize the current state of the art in fluorescent sensing. For this reason, Drs. Geddes and Lakowicz have invited chapters, encompassing a broad range of fluorescence sensing techniques. Some chapters deal with small molecule sensors, such as for anions, cations, and CO2, while others summarize recent advances in protein-based and macromolecular sensors. The Editors have, however, not included DNA or RNA based sensing in this volume, as this were reviewed in Volume 7 and is to be the subject of a more detailed volume in the near future

    Muon spin relaxation studies of incommensurate magnetism and superconductivity in stage-4 La2_{2}CuO4.11_{4.11} and La1.88_{1.88}Sr0.12_{0.12}CuO4_{4}

    Full text link
    This paper reports muon spin relaxation (MuSR) measurements of two single crystals of the title high-Tc cuprate systems where static incommensurate magnetism and superconductivity coexist. By zero-field MuSR measurements and subsequent analyses with simulations, we show that (1) the maximum ordered Cu moment size (0.36 Bohr magneton) and local spin structure are identical to those in prototypical stripe spin systems with the 1/8 hole concentration; (2) the static magnetism is confined to less than a half of the volume of the sample, and (3) regions with static magnetism form nano-scale islands with the size comparable to the in-plane superconducting coherence length. By transverse-field MuSR measurements, we show that Tc of these systems is related to the superfluid density, in the same way as observed in cuprate systems without static magnetism. We discuss a heuristic model involving percolation of these nanoscale islands with static magnetism as a possible picture to reconcile heterogeneity found by the present MuSR study and long-range spin correlations found by neutron scattering.Comment: 19 pages, 15 figures, submitted to Phys. Rev. B. E-mail: [email protected]

    Ruxolitinib Pharmacokinetics and Pharmacodynamics in Children with Acute and Chronic Graft-versus-Host Disease

    Get PDF
    We evaluated the pharmacokinetics (PK) of oral ruxolitinib in children with steroid-refractory acute graft-versus-host disease (aGVHD) (age &lt;12 years) and chronic GVHD (cGVHD) (age ≤18 years) using our published pediatric dosing. PK sampling was performed before and 2 hours after ruxolitinib administration in patients with established cGVHD. More extensive PK analyses were performed in patients with newly diagnosed aGVHD or cGVHD before and .5, 1, 2, 4, and 6 hours after ruxolitinib administration in patients weighing &gt;10 kg and before, 3+, and 6+ hours in children weighing &lt;10 kg. pSTAT1, pSTAT3, and pSTAT5 expression levels were measured on CD4+ and CD8+ T cells before and 2 hours after ruxolitinib administration as a pharmacodynamic marker of JAK/STAT inhibition. Thirteen patients were prospectively enrolled, including 8 with existing cGVHD (age 0 to ≤18 years), 4 with new-onset steroid-refractory aGVHD (age 0 to &lt;12 years) and 1 with newly diagnosed steroid-refractory cGVHD. Great variability in PK was seen. Mean oral clearance (CL/F) was 7.76 ± 4.09 L/h (range, 3.1 to 15.3 L/h). The average elimination half-life was 2.32 ± 1.0 hours. Mean ruxolitinib clearance was higher in children age &lt;2 years versus those age &gt;2 years (12.1 ± 3.0 L/h versus 5.7 ± 2.8 L/h; P = .005) and was reduced with concurrent treatment with azoles and azithromycin. We saw a variable reduction in pSTAT1/3/5 expression on T cells at time of peak ruxolitinib absorption (2 hours after dosing). Children &lt;10 kg had lower ruxolitinib exposure, possibly due to inherent increased drug clearance or variability in dosing methods, leading to decreased drug absorption.</p

    Effects of watershed land use on nitrogen concentrations and δ15 Nitrogen in groundwater

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 77 (2006): 199-215, doi:10.1007/s10533-005-1036-2.Eutrophication is a major agent of change affecting freshwater, estuarine, and marine systems. It is largely driven by transportation of nitrogen from natural and anthropogenic sources. Research is needed to quantify this nitrogen delivery and to link the delivery to specific land-derived sources. In this study we measured nitrogen concentrations and δ15N values in seepage water entering three freshwater ponds and six estuaries on Cape Cod, Massachusetts and assessed how they varied with different types of land use. Nitrate concentrations and δ15N values in groundwater reflected land use in developed and pristine watersheds. In particular, watersheds with larger populations delivered larger nitrate loads with higher δ15N values to receiving waters. The enriched δ15N values confirmed nitrogen loading model results identifying wastewater contributions from septic tanks as the major N source. Furthermore, it was apparent that N coastal sources had a relatively larger impact on the N loads and isotopic signatures than did inland N sources further upstream in the watersheds. This finding suggests that management priorities could focus on coastal sources as a first course of action. This would require management constraints on a much smaller population.This work was supported by funds from the Woods Hole Oceanographic Institution Sea Grant Program, from the Cooperative Institute for Coastal and Estuarine Environmental Technology, from Massachusetts Department of Environmental Protection to Applied Science Associates, Narragansett, RI, as well as from Palmer/McLeod and NOAA National Estuarine Research Reserve Fellowships to Kevin Kroeger. This work is the result of research sponsored by NOAA National Sea Grant College Program Office, Department of Commerce, under Grant No. NA86RG0075, Woods Hole Oceanographic Institution Sea Grant Project No. R/M-40
    corecore