58 research outputs found

    A probabilistic model for gene content evolution with duplication, loss, and horizontal transfer

    Full text link
    We introduce a Markov model for the evolution of a gene family along a phylogeny. The model includes parameters for the rates of horizontal gene transfer, gene duplication, and gene loss, in addition to branch lengths in the phylogeny. The likelihood for the changes in the size of a gene family across different organisms can be calculated in O(N+hM^2) time and O(N+M^2) space, where N is the number of organisms, hh is the height of the phylogeny, and M is the sum of family sizes. We apply the model to the evolution of gene content in Preoteobacteria using the gene families in the COG (Clusters of Orthologous Groups) database

    Genome-wide association study of classical Hodgkin lymphoma identifies key regulators of disease susceptibility

    Get PDF
    Several susceptibility loci for classical Hodgkin lymphoma (cHL) have been reported, however much of the heritable risk is unknown. Here, we perform a meta-analysis of two existing genome-wide association studies (GWAS), a new GWAS, and replication totalling 5,314 cases and 16,749 controls. We identify risk loci for all cHL at 6q22.33 (rs9482849, P=1.52 × 10-8) and for nodular sclerosis HL (NSHL) at 3q28 (rs4459895, P=9.43 × 10-17), 6q23.3 (rs6928977, P=4.62 × 10-55 11), 10p14 (rs3781093, P=9.49 × 10-13), 13q34 (rs112998813, P=4.58 × 10-8) and 16p13.13 (rs34972832, P=2.12 × 10-8). Additionally, independent loci within the HLA region are observed for NSHL (rs9269081, HLA-DPB1*03:01, Val86 in HLA-DRB1) and mixed cellularity HL (rs1633096, rs13196329, Val86 in HLA-DRB1). The new and established risk loci localise to areas of active chromatin and show an over-representation of transcription factor binding for determinants of B-cell development and immune response.In the United Kingdom, Bloodwise (LLR; 10021) provided principal funding for the study. Support from Cancer Research UK (C1298/A8362 supported by the Bobby Moore Fund) and the Lymphoma Research Trust is also acknowledged. A.S. is supported by a clinical fellowship from Cancer Research UK. For the UK-GWAS, sample and data acquisition were supported by Breast Cancer Now, the European Union and the Lymphoma Research Trust. The UK-GWAS made use of control genotyping data generated by the WTCCC. For further information, please visit the publishr's website

    Use of External Metabolising Systems in the Neutral Red Assay

    No full text
    • 

    corecore