32 research outputs found

    Patient, interrupted: MEG oscillation dynamics reveal temporal dysconnectivity in schizophrenia

    Get PDF
    Current theories of schizophrenia emphasize the role of altered information integration as the core dysfunction of this illness. While ample neuroimaging evidence for such accounts comes from investigations of spatial connectivity, understanding temporal disruptions is important to fully capture the essence of dysconnectivity in schizophrenia. Recent electrophysiology studies suggest that long-range temporal correlation (LRTC) in the amplitude dynamics of neural oscillations captures the integrity of transferred information in the healthy brain. Thus, in this study, 25 schizophrenia patients and 25 controls (8 females/group) were recorded during two five-minutes of resting-state magnetoencephalography (once with eyes-open and once with eyes-closed). We used source-level analyses to investigate temporal dysconnectivity in patients by characterizing LRTCs across cortical and sub-cortical brain regions. In addition to standard statistical assessments, we applied a machine learning framework using support vector machine to evaluate the discriminative power of LRTCs in identifying patients from healthy controls. We found that neural oscillations in schizophrenia patients were characterized by reduced signal memory and higher variability across time, as evidenced by cortical and subcortical attenuations of LRTCs in the alpha and beta frequency bands. Support vector machine significantly classified participants using LRTCs in key limbic and paralimbic brain areas, with decoding accuracy reaching 82%. Importantly, these brain regions belong to networks that are highly relevant to the symptomology of schizophrenia. These findings thus posit temporal dysconnectivity as a hallmark of altered information processing in schizophrenia, and help advance our understanding of this pathology

    Increased Evoked Potentials to Arousing Auditory Stimuli during Sleep: Implication for the Understanding of Dream Recall

    Get PDF
    High dream recallers (HR) show a larger brain reactivity to auditory stimuli during wakefulness and sleep as compared to low dream recallers (LR) and also more intra-sleep wakefulness (ISW), but no other modification of the sleep macrostructure. To further understand the possible causal link between brain responses, ISW and dream recall, we investigated the sleep microstructure of HR and LR, and tested whether the amplitude of auditory evoked potentials (AEPs) was predictive of arousing reactions during sleep. Participants (18 HR, 18 LR) were presented with sounds during a whole night of sleep in the lab and polysomnographic data were recorded. Sleep microstructure (arousals, rapid eye movements (REMs), muscle twitches (MTs), spindles, KCs) was assessed using visual, semi-automatic and automatic validated methods. AEPs to arousing (awakenings or arousals) and non-arousing stimuli were subsequently computed. No between-group difference in the microstructure of sleep was found. In N2 sleep, auditory arousing stimuli elicited a larger parieto-occipital positivity and an increased late frontal negativity as compared to non-arousing stimuli. As compared to LR, HR showed more arousing stimuli and more long awakenings, regardless of the sleep stage but did not show more numerous or longer arousals. These results suggest that the amplitude of the brain response to stimuli during sleep determine subsequent awakening and that awakening duration (and not arousal) is the critical parameter for dream recall. Notably, our results led us to propose that the minimum necessary duration of an awakening during sleep for a successful encoding of dreams into long-term memory is approximately 2 min

    Altered brain criticality in schizophrenia: new insights from magnetoencephalography

    Get PDF
    Schizophrenia has a complex etiology and symptomatology that is difficult to untangle. After decades of research, important advancements toward a central biomarker are still lacking. One of the missing pieces is a better understanding of how non-linear neural dynamics are altered in this patient population. In this study, the resting-state neuromagnetic signals of schizophrenia patients and healthy controls were analyzed in the framework of criticality. When biological systems like the brain are in a state of criticality, they are thought to be functioning at maximum efficiency (e.g., optimal communication and storage of information) and with maximum adaptability to incoming information. Here, we assessed the self-similarity and multifractality of resting-state brain signals recorded with magnetoencephalography in patients with schizophrenia patients and in matched controls. Schizophrenia patients had similar, although attenuated, patterns of self-similarity and multifractality values. Statistical tests showed that patients had higher values of self-similarity than controls in fronto-temporal regions, indicative of more regularity and memory in the signal. In contrast, patients had less multifractality than controls in the parietal and occipital regions, indicative of less diverse singularities and reduced variability in the signal. In addition, supervised machine-learning, based on logistic regression, successfully discriminated the two groups using measures of self-similarity and multifractality as features. Our results provide new insights into the baseline cognitive functioning of schizophrenia patients by identifying key alterations of criticality properties in their resting-state brain data

    A Comparaison of Methods for Detection of High Frequency Oscillations (HFOs) in Human Intacerberal EEG Recordings

    No full text
    Abstract High Frequency Oscillations (HFOs) in the range of 80-500Hz seem to be a reliable bio marker of tissue capable of producing seizures. Visual marking of HFOs related to long duration/multi channel EEG data is extremely tedious, highly time-consuming and inevitably subjective. Therefore, automated and reliable detection of HFOs is much more efficient. The purpose of the present study is to improve in the first stage three existing HFOs detectors (CM V, MP, BMT), and subsequently compare them on the same database. Our main findings are summa rized as follows: The efficiency of methods depends on the required sensitivity and the False Discovery Rate (FDR). First, if the required sensitivity below 87% is sufficient for the intended application, CM V method could perform well in terms of low false detection rate (FDR<14%). Secondly, if the application requires a sensitivity between 87% and 92%, the three methods could perform in a similar way in terms o f performance, wh ich appro ximately corresponds to an FDR in the range of 14-19%. Finally, if a high sensitivity is required (92% up to 98%), BMT based method can be considered the most efficient and leads to significantly lower FDR values (19% to 23%) co mpared to other methods. Keyword

    Decoding the Locus of Covert Visuospatial Attention from EEG Signals.

    No full text
    Visuospatial attention can be deployed to different locations in space independently of ocular fixation, and studies have shown that event-related potential (ERP) components can effectively index whether such covert visuospatial attention is deployed to the left or right visual field. However, it is not clear whether we may obtain a more precise spatial localization of the focus of attention based on the EEG signals during central fixation. In this study, we used a modified Posner cueing task with an endogenous cue to determine the degree to which information in the EEG signal can be used to track visual spatial attention in presentation sequences lasting 200 ms. We used a machine learning classification method to evaluate how well EEG signals discriminate between four different locations of the focus of attention. We then used a multi-class support vector machine (SVM) and a leave-one-out cross-validation framework to evaluate the decoding accuracy (DA). We found that ERP-based features from occipital and parietal regions showed a statistically significant valid prediction of the location of the focus of visuospatial attention (DA = 57%, p < .001, chance-level 25%). The mean distance between the predicted and the true focus of attention was 0.62 letter positions, which represented a mean error of 0.55 degrees of visual angle. In addition, ERP responses also successfully predicted whether spatial attention was allocated or not to a given location with an accuracy of 79% (p < .001). These findings are discussed in terms of their implications for visuospatial attention decoding and future paths for research are proposed
    corecore