13 research outputs found

    Comprendre la sous-strucutre de jets au LHC

    No full text
    The Large Hadron Collider (LHC) is running at a center-of-mass energy of 13 TeV, thus reaching energies far above the electroweak scale. For the first time, heavy particles are produced in the boosted regime, i.e. with transverse momentum much larger than their mass. Their hadronic decay products are collimated and end up being clustered into a single jet. In this situation is not easy to discriminate the heavy particle signal from the background, formed by jets originated from QCD partons, so one has to examine the internal dynamics of the jet using jet substructure techniques. Jet substructure tools are divided in three main categories: Jet shapes, which constrain soft-gluon radiation inside jets; Taggers which look for multiple hard cores inside the jet, a situation more common in signal jets than in QCD jets; and Groomers which clean the fat jets of soft-and-large-angle radiation, often dominated by the underlying event.This thesis proposes an analytical approach which allows us to understand the sources of performance differences between methods. We will use all-order resummation techniques, relevant for the boosted regime where the mass and transverse-momentum scale are widely separated. We motivate the need for resummation and introduce the basic elements (building blocks) that are used throughout the thesis. In this thesis, we focus on two-pronged jets, like W/Z/H decays.We first study how a specific tagger, namely Y-splitter, can be combined with a variety of grooming techniques: the modified MassDrop Tagger (mMDT), trimming and SoftDrop. It is known from Monte Carlo studies that such combination increases the Y-splitter performance. We study the origin of this behaviour from a theoretical point of view and the impact of non-perturbative effects. We also introduce improved variants of the original Y-splitter method.Next, we study the use jet shapes as a discriminant variable between two-pronged hadronic decays of electroweak bosons and the QCD jets background. We compute analytically the jet mass distribution with an additional cut on the jet shape variable. We obtain results for 3 common shapes: N-subjettiness, Energy Correlation function and MassDrop parameter. Our results explain differences in discriminating power between the shapes. We also compare our results to Monte Carlo generators and study the impact of non-perturbative effects.Our next study investigates the combination of grooming/tagging techniques with jet shapes, in particular N-subjettiness. In this work, we propose the dichroic N-subjettiness ratio, where we use a large jet (with or without a pre-grooming step) for calculating tau ₂ and a smaller, tagged subjet for tau₁. This observable gives an enhanced performance compared to the variants currently used in experimental analyses, while keeping non-perturbative effects under control.Finally, we perform a phenomenological study of the jet mass distribution after applying the mMDT. This is currently being measured by LHC experiments. Our theoretical predictions account for the resummation of the leading-logarithm of the ratio of the jet mass over the jet transverse momentum and it is matched to fixed-order matrix elements computed at next-to-leading order. We discuss two options according to whether the distributions are measured in bins of the jet transverse momentum before or after the mMDT.Le Large Hadron Collider (LHC) fonctionne à une énergie dans le centre-de-masse de 13 TeV, atteignant ainsi des énergies bien au-dessus de l'échelle électrofaible. Pour la première fois, des particules lourdes sont produites dans le régime boosté, c'est-à-dire avec une impulsion transverse beaucoup plus grand que leur masse. Leur produits de désintégration hadronique sont collimatés et finisseent par être regroupé dans un seul jet. Dans cette situation, il n'est pas facile de discriminer le signal des particules lourdes du bruit de fond formé par des jets originés par les partons, il faut examiner la dynamique interne du jet avec des techniques de sous-structure des jets. Les outils de la sous-structure de jet sont divisés en trois catégories : « Jet shapes » qui contraient la radiation des gluons mous dans le jet ; « Taggers » qui cherchent plusieurs cœurs d'énergie dans le jet, une situation plus courant dans les jets de signaux que dans les jets QCD ; et les « Groomers » qui éliminent la radiation molle et à grand angle dans le jet, souvent dominés par l'événement sous-jacent.Dans cette thèse, on propose une approche analytique qui nous permet de comprendre les sources des différences de performance entre les méthodes. On utilise des techniques de resommation à tous les ordres en théorie des perturbations, pertinentes pour les régimes bostés où l'échelle de masse et de l'impulsion transverse sont largement séparées. On motive le besoin de resommation et on introduit les éléments de base qui sont utilisés tout au long de la thèse. Cette thèse se concentre sur les jets à deux cœurs, comment les bosons W/Z/H.Premièrement, on explore comment un tagger spécifique, le Y-splitter, peut être combiné avec une variété de techniques de grooming : le MassDrop Tagger (mMDT), trimming et SoftDrop. Selon des études Monte Carlo, cette combinaison augmente la performance du Y-splitter. On explique l’origine de se comportement par des calculs théoriques et étudie l'impact des effets non-perturbatives. On présente également des variantes améliorées de la méthode Y-Splitter originale.Ensuite, on étudie l'utilisation des jet shapes comment une variable discriminante entre les désintégrations hadroniques à deux cœurs des bosons électrofaibles et le bruit de fond des jets QCD. On calcule analytiquement la distribution de masse avec une coupure sur la variable jet shape. On considère 3 shapes couramment utilisées : N-subjettiness, « Energy Correlation functions » et le paramètre MassDrop. Nos résultats expliquent la différence entre les performances des différentes méthodes. On compare également nos résultats aux générateurs de Monte Carlo et on étudie l'impact des effets non-perturbatifs.Notre étude suivant examine la combinaison des techniques de grooming/tagging avec des jet shapes, en particulier le N-subjettiness. On propose le rapport dichroïque de N-subjettiness, où on utilise un gros jet (avec ou sans pre-grooming) pour calculer tau ₂ et un jet plus petit, avec tagging pour tau₁. Cette version donne une performance améliorée par rapport aux versions utilisées actuellement par les expériences, tout en maintenant les effets non-perturbatifs sous contrôle.Enfin, on effectue une étude phénoménologique de la distribution de masse des jets avec mMDT. Ceci est actuellement mesurée par des expériences au LHC. Nos prédictions théoriques prennent en compte les logarithmes dominants du rapport de la masse de jet sur l'impulsion transverse et on fait le « matching » avec les éléments de matrice à ordre fixe calculés au NLO. On discute deux options possibles, selon que les distributions sont mesurées dans des bins de l'impulsion transverse avant ou après le mMDT

    Jet Substructure

    No full text
    Review on recent progress in jet substructure at the LHC, from a theoretical point of view

    Jet mass distributions with grooming

    No full text
    We perform a phenomenological study of the invariant mass distribution of hadronic jets produced in pp collisions, in conjunction with a groomer (modified MassDrop Tagger and Soft Drop). Our calculation resums large logarithms of the jet mass and includes the full dependence on the groomer’s energy threshold parameter, and it is matched to fixed-order QCD matrix elements at next-to-leading order. We accounted for non-perturbative contributions by including a correction factor derived from Monte Carlo parton-shower simulations

    A study of jet mass distributions with grooming

    No full text
    Abstract We perform a phenomenological study of the invariant mass distribution of hadronic jets produced in proton-proton collisions, in conjunction with a grooming algorithm. In particular, we consider the modified MassDrop Tagger (mMDT), which corresponds to Soft Drop with angular exponent β = 0. Our calculation, which is differential in both jet mass and jet transverse momentum, resums large logarithms of the jet mass, including the full dependence on the groomer’s energy threshold z cut, and it is matched to fixed-order QCD matrix elements at next-to-leading order. In order to account for non-perturbative contributions, originating from the hadronisation process and from the underlying event, we also include a phenomenological correction factor derived from Monte Carlo parton shower simulations. Furthermore, we consider two different possibilities for the jet transverse momentum: before or after grooming. We show that the former should be preferred for comparisons with upcoming experimental data essentially because the mMDT transverse momentum spectrum is not collinear safe, though the latter exhibits less sensitivity to underlying event and displays properties that may provide complementary information for probing non-perturbative effects

    The jet mass distribution after Soft Drop

    Get PDF
    Abstract We present a first-principle computation of the mass distribution of jets which have undergone the grooming procedure known as Soft Drop. This calculation includes the resummation of the large logarithms of the jet mass over its transverse momentum, up to next-to-logarithmic accuracy, matched to exact fixed-order results at next-to-leading order. We also include non-perturbative corrections obtained from Monte-Carlo simulations and discuss analytic expressions for hadronisation and Underlying Event effects

    Factorization and Resummation for double differential in τ0 and τ1

    No full text
    We present a factorisation formula for the double differential cross-section in the N-jettiness variables τ1 and τ0. The phase space spanned by these two variables are already known in different hierarchies between them. However the region τ1 ~ τ0 is not well known due to absence of a proper factorisation formula in this scenario. This region corresponds to two unordered but resolved emissions. We present the factorisation formula first time for such unordered emissions. We use Soft collinear Effective theory (SCET) to separate the soft and collinear modes contribution at the measurement level. Using the power counting argument in SCET, we completely separate the collinear and soft contribution which are encoded inside Beam and Soft functions respectively. We also comment on the structure of these objects as well as on their consistencies. Finally we describe the resummation and matching with other regions of phase space in particular the SCET+ region with strongly ordered emissions. This has immediate application on the improvement of parton shower accuracy in Geneva framework at NNLL' accuracy as well as on the jet substructure observables without hierarchies

    The jet mass distribution after Soft Drop

    No full text
    We present a first-principle computation of the mass distribution of jets which have undergone the grooming procedure known as Soft Drop. This calculation includes the resummation of the large logarithms of the jet mass over its transverse momentum, up to next-to-logarithmic accuracy, matched to exact fixed-order results at next-to-leading order. We also include non-perturbative corrections obtained from Monte-Carlo simulations and discuss analytic expressions for hadronisation and Underlying Event effects
    corecore