2,488 research outputs found

    A Bio-Inspired Self-Healing Polymer System for Sustainable Plastics

    Get PDF
    Studying how marine organisms make tough biologic materials that autonomously heal allows us to integrate this biological self-healing motif into synthetic biomimetic polymers. These types of polymers will be used to develop components with greater fatigue life and toughness, promoting greater resource sustainability by reducing plastic consumption. The amino acid 3,4-dihydroxyphenylalanine (DOPA) grants marine mussels the ability to strongly affix themselves to the rocks under water by forming strong reversible bonds with their environment. Poly[(3,4-dihydroxystyrene)-co-styrene)] (P[3,4-DHS-S]) is a synthetic polymer mimic of DOPA with chemical structure similar to polystyrene (PS) with a potential self-healing mechanism. This intrinsic self-healing mechanism works to toughen and reform bonds to inhibit or retard crack propagation without external stimuli and energy. This work investigates the critical stress intensity for propagating preexisting cracks induced by a Vickers indentation in P[3,4-DHS-S], and the effects that different cross-linking agents have on crack growth within the polymer matrix. A Life Cycle Assessment (LCA) is also performed to give component designers supplemental information needed to evaluate any differences between using P[3,4-DHS-S] as an alternative to PS in terms of environmental and economic sustainability

    NEPP Program Task 17-294 Government Working Group

    Get PDF
    This presentation will discuss in detail NASA Government Working Group government topics from NASA Electronic Parts Assurance Group (NEPAG) which require additional in-depth technical solutions

    Physical non-viral gene delivery methods for tissue engineering

    Get PDF
    The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that “fits-all” cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications

    Observing Strategies for the NICI Campaign to Directly Image Extrasolar Planets

    Full text link
    We discuss observing strategy for the Near Infrared Coronagraphic Imager (NICI) on the 8-m Gemini South telescope. NICI combines a number of techniques to attenuate starlight and suppress superspeckles: 1) coronagraphic imaging, 2) dual channel imaging for Spectral Differential Imaging (SDI) and 3) operation in a fixed Cassegrain rotator mode for Angular Differential Imaging (ADI). NICI will be used both in service mode and for a dedicated 50 night planet search campaign. While all of these techniques have been used individually in large planet-finding surveys, this is the first time ADI and SDI will be used with a coronagraph in a large survey. Thus, novel observing strategies are necessary to conduct a viable planet search campaign.Comment: 12 pages, 10 figures, submitted to Proceedings of the SPI

    Contents

    Get PDF
    We introduce the `displacemon' electromechanical architecture that comprises a vibrating nanobeam, e.g. a carbon nanotube, flux coupled to a superconducting qubit. This platform can achieve strong and even ultrastrong coupling enabling a variety of quantum protocols. We use this system to describe a protocol for generating and measuring quantum interference between two trajectories of a nanomechanical resonator. The scheme uses a sequence of qubit manipulations and measurements to cool the resonator, apply an effective diffraction grating, and measure the resulting interference pattern. We simulate the protocol for a realistic system consisting of a vibrating carbon nanotube acting as a junction in a superconducting qubit, and we demonstrate the feasibility of generating a spatially distinct quantum superposition state of motion containing more than 10610^6 nucleons.Comment: 12 pages, 7 figure

    Learning in Tele-autonomous Systems using Soar

    Get PDF
    Robo-Soar is a high-level robot arm control system implemented in Soar. Robo-Soar learns to perform simple block manipulation tasks using advice from a human. Following learning, the system is able to perform similar tasks without external guidance. Robo-Soar corrects its knowledge by accepting advice about relevance of features in its domain, using a unique integration of analytic and empirical learning techniques

    Robo-Soar: An Integration of External Interaction, Planning, and Learning using Soar

    Get PDF
    This chapter reports progress in extending the Soar architecture to tasks that involve interaction with external environments. The tasks are performed using a Puma arm and a camera in a system called Robo-Soar. The tasks require the integration of a variety of capabilities including problem solving with incomplete knowledge, reactivity, planning, guidance from external advice, and learning to improve the efficiency and correctness of problem solving. All of these capabilities are achieved without the addition of special purpose modules or subsystems to Soar
    corecore