34 research outputs found

    Remote and long-term self-monitoring of electroencephalographic and noninvasive measurable variables at home in patients with epilepsy (EEG@HOME) : protocol for an observational study

    Get PDF
    ©Andrea Biondi, Petroula Laiou, Elisa Bruno, Pedro F Viana, Martijn Schreuder, William Hart, Ewan Nurse, Deb K Pal, Mark P Richardson. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 19.03.2021. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Research Protocols, is properly cited. The complete bibliographic information, a link to the original publication on http://www.researchprotocols.org, as well as this copyright and license information must be included.Background: Epileptic seizures are spontaneous events that severely affect the lives of patients due to their recurrence and unpredictability. The integration of new wearable and mobile technologies to collect electroencephalographic (EEG) and extracerebral signals in a portable system might be the solution to prospectively identify times of seizure occurrence or propensity. The performances of several seizure detection devices have been assessed by validated studies, and patient perspectives on wearables have been explored to better match their needs. Despite this, there is a major gap in the literature on long-term, real-life acceptability and performance of mobile technology essential to managing chronic disorders such as epilepsy. Objective: EEG@HOME is an observational, nonrandomized, noninterventional study that aims to develop a new feasible procedure that allows people with epilepsy to independently, continuously, and safely acquire noninvasive variables at home. The data collected will be analyzed to develop a general model to predict periods of increased seizure risk. Methods: A total of 12 adults with a diagnosis of pharmaco-resistant epilepsy and at least 20 seizures per year will be recruited at King's College Hospital, London. Participants will be asked to self-apply an easy and portable EEG recording system (ANT Neuro) to record scalp EEG at home twice daily. From each serial EEG recording, brain network ictogenicity (BNI), a new biomarker of the propensity of the brain to develop seizures, will be extracted. A noninvasive wrist-worn device (Fitbit Charge 3; Fitbit Inc) will be used to collect non-EEG biosignals (heart rate, sleep quality index, and steps), and a smartphone app (Seer app; Seer Medical) will be used to collect data related to seizure occurrence, medication taken, sleep quality, stress, and mood. All data will be collected continuously for 6 months. Standardized questionnaires (the Post-Study System Usability Questionnaire and System Usability Scale) will be completed to assess the acceptability and feasibility of the procedure. BNI, continuous wrist-worn sensor biosignals, and electronic survey data will be correlated with seizure occurrence as reported in the diary to investigate their potential values as biomarkers of seizure risk. Results: The EEG@HOME project received funding from Epilepsy Research UK in 2018 and was approved by the Bromley Research Ethics Committee in March 2020. The first participants were enrolled in October 2020, and we expect to publish the first results by the end of 2022. Conclusions: With the EEG@HOME study, we aim to take advantage of new advances in remote monitoring technology, including self-applied EEG, to investigate the feasibility of long-term disease self-monitoring. Further, we hope our study will bring new insights into noninvasively collected personalized risk factors of seizure occurrence and seizure propensity that may help to mitigate one of the most difficult aspects of refractory epilepsy: the unpredictability of seizure occurrenceThis study is funded by Epilepsy Research UK (award 1803). MPR, PFV, and EN are supported by the Epilepsy Foundation of America’s Epilepsy Innovation Institute My Seizure Gauge grant.info:eu-repo/semantics/publishedVersio

    Heterogeneity of resting-state EEG features in juvenile myoclonic epilepsy and controls

    Get PDF
    Abnormal EEG features are a hallmark of epilepsy, and abnormal frequency and network features are apparent in EEGs from people with idiopathic generalized epilepsy in both ictal and interictal states. Here, we characterize differences in the resting-state EEG of individuals with juvenile myoclonic epilepsy and assess factors influencing the heterogeneity of EEG features. We collected EEG data from 147 participants with juvenile myoclonic epilepsy through the Biology of Juvenile Myoclonic Epilepsy study. Ninety-five control EEGs were acquired from two independent studies [Chowdhury et al. (2014) and EU-AIMS Longitudinal European Autism Project]. We extracted frequency and functional network-based features from 10 to 20 s epochs of resting-state EEG, including relative power spectral density, peak alpha frequency, network topology measures and brain network ictogenicity: a computational measure of the propensity of networks to generate seizure dynamics. We tested for differences between epilepsy and control EEGs using univariate, multivariable and receiver operating curve analysis. In addition, we explored the heterogeneity of EEG features within and between cohorts by testing for associations with potentially influential factors such as age, sex, epoch length and time, as well as testing for associations with clinical phenotypes including anti-seizure medication, and seizure characteristics in the epilepsy cohort. P-values were corrected for multiple comparisons. Univariate analysis showed significant differences in power spectral density in delta (2–5 Hz) (P = 0.0007, hedges’ g = 0.55) and low-alpha (6–9 Hz) (P = 2.9 × 10−8, g = 0.80) frequency bands, peak alpha frequency (P = 0.000007, g = 0.66), functional network mean degree (P = 0.0006, g = 0.48) and brain network ictogenicity (P = 0.00006, g = 0.56) between epilepsy and controls. Since age (P = 0.009) and epoch length (P = 1.7 × 10−8) differed between the two groups and were potential confounders, we controlled for these covariates in multivariable analysis where disparities in EEG features between epilepsy and controls remained. Receiver operating curve analysis showed low-alpha power spectral density was optimal at distinguishing epilepsy from controls, with an area under the curve of 0.72. Lower average normalized clustering coefficient and shorter average normalized path length were associated with poorer seizure control in epilepsy patients. To conclude, individuals with juvenile myoclonic epilepsy have increased power of neural oscillatory activity at low-alpha frequencies, and increased brain network ictogenicity compared with controls, supporting evidence from studies in other epilepsies with considerable external validity. In addition, the impact of confounders on different frequency-based and network-based EEG features observed in this study highlights the need for careful consideration and control of these factors in future EEG research in idiopathic generalized epilepsy particularly for their use as biomarkers

    Functional network topology in drug resistant and well-controlled idiopathic generalized epilepsy:a resting state functional MRI study

    Get PDF
    Despite an increasing number of drug treatment options for people with idiopathic generalized epilepsy (IGE), drug resistance remains a significant issue and the mechanisms underlying it remain poorly understood. Previous studies have largely focused on potential cellular or genetic explanations for drug resistance. However, epilepsy is understood to be a network disorder and there is a growing body of literature suggesting altered topology of large-scale resting networks in people with epilepsy compared with controls. We hypothesize that network alterations may also play a role in seizure control. The aim of this study was to compare resting state functional network structure between well-controlled IGE (WC-IGE), drug resistant IGE (DR-IGE) and healthy controls. Thirty-three participants with IGE (10 with WC-IGE and 23 with DR-IGE) and 34 controls were included. Resting state functional MRI networks were constructed using the Functional Connectivity Toolbox (CONN). Global graph theoretic network measures of average node strength (an equivalent measure to mean degree in a network that is fully connected), node strength distribution variance, characteristic path length, average clustering coefficient, small-world index and average betweenness centrality were computed. Graphs were constructed separately for positively weighted connections and for absolute values. Individual nodal values of strength and betweenness centrality were also measured and 'hub nodes' were compared between groups. Outcome measures were assessed across the three groups and between both groups with IGE and controls. The IGE group as a whole had a higher average node strength, characteristic path length and average betweenness centrality. There were no clear differences between groups according to seizure control. Outcome metrics were sensitive to whether negatively correlated connections were included in network construction. There were no clear differences in the location of 'hub nodes' between groups. The results suggest that, irrespective of seizure control, IGE interictal network topology is more regular and has a higher global connectivity compared to controls, with no alteration in hub node locations. These alterations may produce a resting state network that is more vulnerable to transitioning to the seizure state. It is possible that the lack of apparent influence of seizure control on network topology is limited by challenges in classifying drug response. It is also demonstrated that network topological features are influenced by the sign of connectivity weights and therefore future methodological work is warranted to account for anticorrelations in graph theoretic studies

    Temporal Evolution of Multiday, Epileptic Functional Networks Prior to Seizure Occurrence

    Get PDF
    Epilepsy is one of the most common neurological disorders, characterized by the occurrence of repeated seizures. Given that epilepsy is considered a network disorder, tools derived from network neuroscience may confer the valuable ability to quantify the properties of epileptic brain networks. In this study, we use well-established brain network metrics (i.e., mean strength, variance of strength, eigenvector centrality, betweenness centrality) to characterize the temporal evolution of epileptic functional networks over several days prior to seizure occurrence. We infer the networks using long-term electroencephalographic recordings from 12 people with epilepsy. We found that brain network metrics are variable across days and show a circadian periodicity. In addition, we found that in 9 out of 12 patients the distribution of the variance of strength in the day (or even two last days) prior to seizure occurrence is significantly different compared to the corresponding distributions on all previous days. Our results suggest that brain network metrics computed fromelectroencephalographic recordings could potentially be used to characterize brain network changes that occur prior to seizures, and ultimately contribute to seizure warning systems

    The Relationship between Major Depression Symptom Severity and Sleep Collected Using a Wristband Wearable Device: Multi-centre Longitudinal Observational Study

    Get PDF
    Research in mental health has implicated sleep pathologies with depression. However, the gold standard for sleep assessment, polysomnography, is not suitable for long-term, continuous, monitoring of daily sleep, and methods such as sleep diaries rely on subjective recall, which is qualitative and inaccurate. Wearable devices, on the other hand, provide a low-cost and convenient means to monitor sleep in home settings. The main aim of this study was to devise and extract sleep features, from data collected using a wearable device, and analyse their correlation with depressive symptom severity and sleep quality, as measured by the self-assessed Patient Health Questionnaire 8-item. Daily sleep data were collected passively by Fitbit wristband devices, and depressive symptom severity was self-reported every two weeks by the PHQ-8. The data used in this paper included 2,812 PHQ-8 records from 368 participants recruited from three study sites in the Netherlands, Spain, and the UK.We extracted 21 sleep features from Fitbit data which describe sleep in the following five aspects: sleep architecture, sleep stability, sleep quality, insomnia, and hypersomnia. Linear mixed regression models were used to explore associations between sleep features and depressive symptom severity. The z-test was used to evaluate the significance of the coefficient of each feature. We tested our models on the entire dataset and individually on the data of three different study sites. We identified 16 sleep features that were significantly correlated with the PHQ-8 score on the entire dataset. Associations between sleep features and the PHQ-8 score varied across different sites, possibly due to the difference in the populations

    The Association Between Home Stay and Symptom Severity in Major Depressive Disorder: Preliminary Findings From a Multicenter Observational Study Using Geolocation Data From Smartphones

    Get PDF
    BACKGROUND: Most smartphones and wearables are currently equipped with location sensing (using GPS and mobile network information), which enables continuous location tracking of their users. Several studies have reported that various mobility metrics, as well as home stay, that is, the amount of time an individual spends at home in a day, are associated with symptom severity in people with major depressive disorder (MDD). Owing to the use of small and homogeneous cohorts of participants, it is uncertain whether the findings reported in those studies generalize to a broader population of individuals with MDD symptoms. OBJECTIVE: The objective of this study is to examine the relationship between the overall severity of depressive symptoms, as assessed by the 8-item Patient Health Questionnaire, and median daily home stay over the 2 weeks preceding the completion of a questionnaire in individuals with MDD. METHODS: We used questionnaire and geolocation data of 164 participants with MDD collected in the observational Remote Assessment of Disease and Relapse-Major Depressive Disorder study. The participants were recruited from three study sites: King's College London in the United Kingdom (109/164, 66.5%); Vrije Universiteit Medisch Centrum in Amsterdam, the Netherlands (17/164, 10.4%); and Centro de Investigación Biomédica en Red in Barcelona, Spain (38/164, 23.2%). We used a linear regression model and a resampling technique (n=100 draws) to investigate the relationship between home stay and the overall severity of MDD symptoms. Participant age at enrollment, gender, occupational status, and geolocation data quality metrics were included in the model as additional explanatory variables. The 95% 2-sided CIs were used to evaluate the significance of model variables. RESULTS: Participant age and severity of MDD symptoms were found to be significantly related to home stay, with older (95% CI 0.161-0.325) and more severely affected individuals (95% CI 0.015-0.184) spending more time at home. The association between home stay and symptoms severity appeared to be stronger on weekdays (95% CI 0.023-0.178, median 0.098; home stay: 25th-75th percentiles 17.8-22.8, median 20.9 hours a day) than on weekends (95% CI -0.079 to 0.149, median 0.052; home stay: 25th-75th percentiles 19.7-23.5, median 22.3 hours a day). Furthermore, we found a significant modulation of home stay by occupational status, with employment reducing home stay (employed participants: 25th-75th percentiles 16.1-22.1, median 19.7 hours a day; unemployed participants: 25th-75th percentiles 20.4-23.5, median 22.6 hours a day). CONCLUSIONS: Our findings suggest that home stay is associated with symptom severity in MDD and demonstrate the importance of accounting for confounding factors in future studies. In addition, they illustrate that passive sensing of individuals with depression is feasible and could provide clinically relevant information to monitor the course of illness in patients with MDD

    Relationship Between Major Depression Symptom Severity and Sleep Collected Using a Wristband Wearable Device:Multicenter Longitudinal Observational Study

    Get PDF
    BACKGROUND: Sleep problems tend to vary according to the course of the disorder in individuals with mental health problems. Research in mental health has associated sleep pathologies with depression. However, the gold standard for sleep assessment, polysomnography (PSG), is not suitable for long-term, continuous monitoring of daily sleep, and methods such as sleep diaries rely on subjective recall, which is qualitative and inaccurate. Wearable devices, on the other hand, provide a low-cost and convenient means to monitor sleep in home settings. OBJECTIVE: The main aim of this study was to devise and extract sleep features from data collected using a wearable device and analyze their associations with depressive symptom severity and sleep quality as measured by the self-assessed Patient Health Questionnaire 8-item (PHQ-8). METHODS: Daily sleep data were collected passively by Fitbit wristband devices, and depressive symptom severity was self-reported every 2 weeks by the PHQ-8. The data used in this paper included 2812 PHQ-8 records from 368 participants recruited from 3 study sites in the Netherlands, Spain, and the United Kingdom. We extracted 18 sleep features from Fitbit data that describe participant sleep in the following 5 aspects: sleep architecture, sleep stability, sleep quality, insomnia, and hypersomnia. Linear mixed regression models were used to explore associations between sleep features and depressive symptom severity. The z score was used to evaluate the significance of the coefficient of each feature. RESULTS: We tested our models on the entire dataset and separately on the data of 3 different study sites. We identified 14 sleep features that were significantly (P<.05) associated with the PHQ-8 score on the entire dataset, among them awake time percentage (z=5.45, P<.001), awakening times (z=5.53, P<.001), insomnia (z=4.55, P<.001), mean sleep offset time (z=6.19, P<.001), and hypersomnia (z=5.30, P<.001) were the top 5 features ranked by z score statistics. Associations between sleep features and PHQ-8 scores varied across different sites, possibly due to differences in the populations. We observed that many of our findings were consistent with previous studies, which used other measurements to assess sleep, such as PSG and sleep questionnaires. CONCLUSIONS: We demonstrated that several derived sleep features extracted from consumer wearable devices show potential for the remote measurement of sleep as biomarkers of depression in real-world settings. These findings may provide the basis for the development of clinical tools to passively monitor disease state and trajectory, with minimal burden on the participant

    Identifying depression-related topics in smartphone-collected free-response speech recordings using an automatic speech recognition system and a deep learning topic model

    Full text link
    Language use has been shown to correlate with depression, but large-scale validation is needed. Traditional methods like clinic studies are expensive. So, natural language processing has been employed on social media to predict depression, but limitations remain-lack of validated labels, biased user samples, and no context. Our study identified 29 topics in 3919 smartphone-collected speech recordings from 265 participants using the Whisper tool and BERTopic model. Six topics with a median PHQ-8 greater than or equal to 10 were regarded as risk topics for depression: No Expectations, Sleep, Mental Therapy, Haircut, Studying, and Coursework. To elucidate the topic emergence and associations with depression, we compared behavioral (from wearables) and linguistic characteristics across identified topics. The correlation between topic shifts and changes in depression severity over time was also investigated, indicating the importance of longitudinally monitoring language use. We also tested the BERTopic model on a similar smaller dataset (356 speech recordings from 57 participants), obtaining some consistent results. In summary, our findings demonstrate specific speech topics may indicate depression severity. The presented data-driven workflow provides a practical approach to collecting and analyzing large-scale speech data from real-world settings for digital health research

    The utility of wearable devices in assessing ambulatory impairments of people with multiple sclerosis in free-living conditions

    Get PDF
    Background and objectives Multiple sclerosis (MS) is a progressive inflammatory and neurodegenerative disease of the central nervous system affecting over 2.5 million people globally. In-clinic six-minute walk test (6MWT) is a widely used objective measure to evaluate the progression of MS. Yet, it has limitations such as the need for a clinical visit and a proper walkway. The widespread use of wearable devices capable of depicting patients’ activity profiles has the potential to assess the level of MS-induced disability in free-living conditions. Methods In this work, we extracted 96 features in different temporal granularities (from minute-level to day-level) from wearable data and explored their utility in estimating 6MWT scores in a European (Italy, Spain, and Denmark) MS cohort of 337 participants over an average of 10 months’ duration. We combined these features with participants’ demographics using three regression models including elastic net, gradient boosted trees and random forest. In addition, we quantified the individual feature's contribution using feature importance in these regression models, linear mixed-effects models, generalized estimating equations, and correlation-based feature selection (CFS). Results The results showed promising estimation performance with R2 of 0.30, which was derived using random forest after CFS. This model was able to distinguish the participants with low disability from those with high disability. Furthermore, we observed that the minute-level (≤ 8 minutes) step count, particularly those capturing the upper end of the step count distribution, had a stronger association with 6MWT. The use of a walking aid was indicative of ambulatory function measured through 6MWT. Conclusions This study demonstrates the utility of wearables devices in assessing ambulatory impairments in people with MS in free-living conditions and provides a basis for future investigation into the clinical relevance
    corecore