70 research outputs found

    Phosphoproteins and protein-kinase activity in isolated envelopes of pea (Pisum sativum L.) chloroplasts

    Get PDF
    A protein kinase was found in envelope membranes of purified pea (Pisum sativum L.) chloroplasts. Separation of the two envelope membranes showed that most of the enzyme activity was localized in the outer envelope. The kinase was activated by Mg2+ and inhibited by ADP and pyrophosphate. It showed no response to changes in pH in the physiological range (pH 7-8) or conventional protein substrates. Up to ten phosphorylated proteins could be detected in the envelope-membrane fraction. The molecular weights of these proteins, as determined by polyacrylamide-gel electrophoresis were: two proteins higher than 145 kDa, 97, 86, 62, 55, 46, 34 and 14 kDa. The 86-kDa band being the most pronounced. Experiments with separated inner and outer envelopes showed that most labeled proteins are also localized in the outer-envelope fraction. The results indicate a major function of the outer envelope in the communication between the chloroplast and the parent cell

    A guanosine 5′-triphosphate-dependent protein kinase is localized in the outer envelope membrane of pea chloroplasts

    Get PDF
    A guanosine 5-triphosphate (GTP)-dependent protein kinase was detected in preparations of outer chloroplast envelope membranes of pea (Pisum sativum L.) chloroplasts. The protein-kinase activity was capable of phosphorylating several envelope-membrane proteins. The major phosphorylated products were 23- and 32.5-kilo-dalton proteins of the outer envelope membrane. Several other envelope proteins were labeled to a lesser extent. Following acid hydrolysis of the labeled proteins, most of the label was detected as phosphoserine with only minor amounts detected as phosphothreonine. Several criteria were used to distinguish the GTP-dependent protein kinase from an ATP-dependent kinase also present in the outer envelope membrane. The ATP-dependent kinase phosphorylated a very different set of envelope-membrane proteins. Heparin inhibited the GTP-dependent kinase but had little effect upon the ATP-dependent enzyme. The GTP-dependent enzyme accepted phosvitin as an external protein substrate whereas the ATP-dependent enzyme did not. The outer membrane of the chloroplast envelope also contained a phosphotransferase capable of transferring labeled phosphate from [-32P]GTP to ADP to yield (-32P]ATP. Consequently, addition of ADP to a GTP-dependent protein-kinase assay resulted in a switch in the pattern of labeled products from that seen with GTP to that typically seen with ATP

    Advancing One Health:Updated core competencies

    Get PDF
    International audienceAbstract One Health recognises the interdependence between the health of humans, animals, plants and the environment. With the increasing inclusion of One Health in multiple global health strategies, the One Health workforce must be prepared to protect and sustain the health and well-being of life on the planet. In this paper, a review of past and currently accepted One Health core competencies was conducted, with competence gaps identified. Here, the Network for Ecohealth and One Health (NEOH) propose updated core competencies designed to simplify what can be a complex area, grouping competencies into three main areas of: Skills; Values and Attitudes; and Knowledge and Awareness; with several layers underlying each. These are intentionally applicable to stakeholders from various sectors and across all levels to support capacity-building efforts within the One Health workforce. The updated competencies from NEOH can be used to evaluate and enhance current curricula, create new ones, or inform professional training programs at all levels, including students, university teaching staff, or government officials as well as continual professional development for frontline health practitioners and policy makers. The competencies are aligned with the new definition of One Health developed by the One Health High-Level Expert Panel (OHHLEP), and when supported by subjectspecific expertise, will deliver the transformation needed to prevent and respond to complex global challenges. One Health Impact Statement Within a rapidly changing global environment, the need for practitioners competent in integrated approaches to health has increased substantially. Narrow approaches may not only limit opportunities for global and local solutions but, initiatives that do not consider other disciplines or social, economic and cultural contexts, may result in unforeseen and detrimental consequences. In keeping with principles of One Health, the Network for Ecohealth and One Health (NEOH) competencies entail a collaborative effort between multiple disciplines and sectors. They focus on enabling practitioners, from any background, at any level or scale of involvement, to promote and support a transformation to integrated health approaches. The updated competencies can be layered with existing disciplinary competencies and used to evaluate and enhance current education curricula, create new ones, or inform professional training programs at all levels-including for students, teachers and government officials as well as continual professional development for frontline health practitioners and policymakers. The competencies outlined here are applicable to all professionals and disciplines who may contribute to One Health, and are complimentary to, not a replacement for, any discipline-specific competencies. We believe the NEOH competencies meet the need outlined by the Quadripartite’s (Food and Agriculture Organisation, United Nations Environment Programme, World Health Organisation, World Organisation for Animal Health) Joint Plan of Action on One Health which calls for cross-sectoral competencies

    Interactive effects of light, leaf temperature, CO 2 and O 2 on photosynthesis in soybean

    Full text link
    A biochemical model of C 3 photosynthesis has been developed by G.D. Farquhar et al. (1980, Planta 149, 78–90) based on Michaelis-Menten kinetics of ribulose-1,5-bisphosphate (RuBP) carboxylase-oxygenase, with a potential RuBP limitation imposed via the Calvin cycle and rates of electron transport. The model presented here is slightly modified so that parameters may be estimated from whole-leaf gas-exchange measurements. Carbon-dioxide response curves of net photosynthesis obtained using soybean plants ( Glycine max (L.) Merr.) at four partial pressures of oxygen and five leaf temperatures are presented, and a method for estimating the kinetic parameters of RuBP carboxylase-oxygenase, as manifested in vivo, is discussed. The kinetic parameters so obtained compare well with kinetic parameters obtained in vitro, and the model fits to the measured data give r 2 values ranging from 0.87 to 0.98. In addition, equations developed by J.D. Tenhunen et al. (1976, Oecologia 26, 89–100, 101–109) to describe the light and temperature responses of measured CO 2 -saturated photosynthetic rates are applied to data collected on soybean. Combining these equations with those describing the kinetics of RuBP carboxylase-oxygenase allows one to model successfully the interactive effects of incident irradiance, leaf temperature, CO 2 and O 2 on whole-leaf photosynthesis. This analytical model may become a useful tool for plant ecologists interested in comparing photosynthetic responses of different C 3 plants or of a single species grown in contrasting environments.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47469/1/425_2004_Article_BF00395048.pd

    Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease

    Get PDF
    One in ten severe acute respiratory syndrome coronavirus 2 infections result in prolonged symptoms termed long coronavirus disease (COVID), yet disease phenotypes and mechanisms are poorly understood1. Here we profiled 368 plasma proteins in 657 participants ≥3 months following hospitalization. Of these, 426 had at least one long COVID symptom and 233 had fully recovered. Elevated markers of myeloid inflammation and complement activation were associated with long COVID. IL-1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in gastrointestinal symptoms and C1QA was elevated in cognitive impairment. Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) were elevated in those with cognitive impairment and SCG3, suggestive of brain–gut axis disturbance, was elevated in gastrointestinal symptoms. Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin G (IgG) was persistently elevated in some individuals with long COVID, but virus was not detected in sputum. Analysis of inflammatory markers in nasal fluids showed no association with symptoms. Our study aimed to understand inflammatory processes that underlie long COVID and was not designed for biomarker discovery. Our findings suggest that specific inflammatory pathways related to tissue damage are implicated in subtypes of long COVID, which might be targeted in future therapeutic trials

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript
    • …
    corecore