3,113 research outputs found

    Non-invasive, multichromatic eye oximeter Final report

    Get PDF
    Optical eye oximeter for measuring oxygen of choroidal blood for monitoring brain oxygen suppl

    Multifrequency VLA observations of the FR I radio galaxy 3C 31: morphology, spectrum and magnetic field

    Full text link
    We present high-quality VLA images of the FR I radio galaxy 3C 31 in the frequency range 1365 to 8440 MHz with angular resolutions from 0.25 to 40 arcsec. Our new images reveal complex, well resolved filamentary substructure in the radio jets and tails. We also use these images to explore the spectral structure of 3C 31 on large and small scales. We infer the apparent magnetic field structure by correcting for Faraday rotation. Some of the intensity substructure in the jets is clearly related to structure in their apparent magnetic field: there are arcs of emission where the degree of linear polarization increases, with the apparent magnetic field parallel to the ridges of the arcs. The spectral indices are significantly steeper (0.62) within 7 arcsec of the nucleus than between 7 and 50 arcsec (0.52 - 0.57). The spectra of the jet edges are also slightly flatter than the average for their surroundings. At larger distances, the jets are clearly delimited from surrounding larger-scale emission both by their flatter radio spectra and by sharp brightness gradients. The spectral index of 0.62 in the first 7 arcsec of 3C 31's jets is very close to that found in other FR I galaxies where their jets first brighten in the radio and where X-ray synchrotron emission is most prominent. Farther from the nucleus, where the spectra flatten, X-ray emission is fainter relative to the radio. The brightest X-ray emission from FR I jets is therefore not associated with the flattest radio spectra, but with a particle-acceleration process whose characteristic energy index is 2.24. The spectral flattening with distance from the nucleus occurs where our relativistic jet models require deceleration, and the flatter-spectra at the jet edges may be associated with transverse velocity shear. (Slightly abridged)Comment: 17 pages, 13 figures, accepted for publication in MNRA

    Structure of the magnetoionic medium around the FR Class I radio galaxy 3C 449

    Full text link
    The goal of this work is to constrain the strength and structure of the magnetic field associated with the environment of the radio source 3C 449, using observations of Faraday rotation, which we model with a structure function technique and by comparison with numerical simulations. We assume that the magnetic field is a Gaussian, isotropic random variable and that it is embedded in the hot intra-group plasma surrounding the radio source. For this purpose, we present detailed rotation measure images for the polarized radio source 3C 449, previously observed with the Very Large Array at seven frequencies between 1.365 and 8.385 GHz. We quantify the statistics of the magnetic-field fluctuations by deriving rotation measure structure functions, which we fit using models derived from theoretical power spectra. We quantify the errors due to sampling by making multiple two-dimensional realizations of the best-fitting power spectrum.We also use depolarization measurements to estimate the minimum scale of the field variations. We then make three-dimensional models with a gas density distribution derived from X-ray observations and a random magnetic field with this power spectrum. Under these assumptions we find that both rotation measure and depolarization data are consistent with a broken power-law magnetic-field power spectrum, with a break at about 11 kpc and slopes of 2.98 and 2.07 at smaller and larger scales respectively. The maximum and minimum scales of the fluctuations are around 65 and 0.2 kpc, respectively. The average magnetic field strength at the cluster centre is 3.5 +/-1.2 micro-G, decreasing linearly with the gas density within about 16 kpc of the nucleus.Comment: 19 pages; 14 figures; accepted for publication on A&A. For a high quality version use ftp://ftp.eso.org/pub/general/guidetti

    Dynamical Phase Transitions In Driven Integrate-And-Fire Neurons

    Full text link
    We explore the dynamics of an integrate-and-fire neuron with an oscillatory stimulus. The frustration due to the competition between the neuron's natural firing period and that of the oscillatory rhythm, leads to a rich structure of asymptotic phase locking patterns and ordering dynamics. The phase transitions between these states can be classified as either tangent or discontinuous bifurcations, each with its own characteristic scaling laws. The discontinuous bifurcations exhibit a new kind of phase transition that may be viewed as intermediate between continuous and first order, while tangent bifurcations behave like continuous transitions with a diverging coherence scale.Comment: 4 pages, 5 figure

    VLBI Polarimetry of 177 Sources from the Caltech-Jodrell Bank Flat-spectrum Survey

    Get PDF
    We present VLBA observations and a statistical analysis of 5 GHz VLBI polarimetry data from 177 sources in the Caltech-Jodrell Bank flat-spectrum (CJF) survey. The CJF survey, a complete, flux-density-limited sample of 293 extragalactic radio sources, gives us the unique opportunity to compare a broad range of source properties for quasars, galaxies and BL Lacertae objects. We focus primarily on jet properties, specifically the correlation between the jet axis angle and the polarization angle in the core and jet. A strong correlation is found for the electric vector polarization angle in the cores of quasars to be perpendicular to the jet axis. Contrary to previous claims, no correlation is found between the jet polarization angle and the jet axis in either quasars or BL Lac objects. With this large, homogeneous sample we are also able to investigate cosmological issues and AGN evolution.Comment: Accepted to the Astrophysical Journal: 37 pages, 14 figure

    The XMM-Newton Detection of Diffuse Inverse Compton X-rays from Lobes of the FR-II Radio Galaxy 3C98

    Full text link
    The XMM-Newton observation of the nearby FR-II radio galaxy 3C 98 is reported. In two exposures on the target, faint diffuse X-ray emission associated with the radio lobes was significantly detected, together with a bright X-ray active nucleus, of which the 2 -- 10 keV intrinsic luminosity is (4 -- 8) \times 10^{42} erg s-1. The EPIC spectra of the northern and southern lobes are reproduced by a single power law model modified by the Galactic absorption, with a photon index of 2.2-0.5+0.6 and 1.7-0.6+0.7 respectively. These indices are consistent with that of the radio synchrotron spectrum, 1.73 +- 0.01 The luminosity of the northern and southern lobes are measured to be 8.3-2.6+3.3 \times 10^{40} erg s-1 and 9.2-4.3+5.7 \times 10^{40} erg s-1, respectively, in the 0.7 -- 7 keV range. The diffuse X-ray emission is interpreted as an inverse-Compton emission, produced when the synchrotron-emitting energetic electrons in the lobes scatter off the cosmic microwave background photons. The magnetic field in the lobes is calculated to be about 1.7 \mu G, which is about 2.5 times lower than the value estimated under the minimum energy condition. The energy density of the electrons is inferred to exceed that in the magnetic fields by a factor of 40 -- 50.Comment: 23 pages, 7 figures. Accepted for publication in the Astrophysical Journa

    A Chandra detection of diffuse hard X-ray emission associated with the lobes of the radio galaxy 3C 452

    Full text link
    An 80 ksec Chandra ACIS observation of the radio galaxy 3C 452 is reported. A diffuse X-ray emission associated with the lobes has been detected with high statistical significance, together with the X-ray nucleus of the host galaxy. The 0.5--5 keV ACIS spectrum of the diffuse emission is described by a two-component model, consisting of a soft thermal plasma emission from the host galaxy halo and a hard non-thermal power-law component. The hard component is ascribed to the inverse Comptonization of cosmic microwave background photons by the synchrotron emitting electrons in the lobes, because its spectral energy index, 0.68+-0.28, is consistent with the radio synchrotron index, 0.78. These results reveal a significant electron dominance in the lobes. The electrons are inferred to have a relatively uniform distribution, while the magnetic field is compressed toward the lobe periphery.Comment: 4 figures, 2 tables, Accepted by ApJL (to appear in the December 1 issue

    Analytical Study of Diffusive Relativistic Shock Acceleration

    Full text link
    Particle acceleration in relativistic shocks is studied analytically in the test-particle, small-angle scattering limit, for an arbitrary velocity-angle diffusion function D. Accurate analytic expressions for the spectral index s are derived using few (2-6) low-order moments of the shock-frame angular distribution. For isotropic diffusion, previous results are reproduced and justified. For anisotropic diffusion, s is shown to be sensitive to D, particularly downstream and at certain angles, and a wide range of s values is attainable. The analysis, confirmed numerically, can be used to test collisionless shock models and to observationally constrain D. For example, strongly forward- or backward-enhanced diffusion downstream is ruled out by GRB afterglow observations.Comment: 4 pages, 2 figures, PRL accepted, minor change
    corecore