3,332 research outputs found

    An Attempt to Probe the Radio Jet Collimation Regions in NGC 4278, NGC 4374 (M84), and NGC 6166

    Full text link
    NRAO Very Long Baseline Array (VLBA) observations of NGC 4278, NGC 4374 (M84), NGC 6166, and M87 (NGC 4486) have been made at 43 GHz in an effort to image the jet collimation region. This is the first attempt to image the first three sources at 43 GHz using Very Long Baseline Interferometry (VLBI) techniques. These three sources were chosen because their estimated black hole mass and distance implied a Schwarzschild radius with large angular size, giving hope that the jet collimation regions could be studied. Phase referencing was utilize for the three sources because of their expected low flux densities. M87 was chosen as the calibrator for NGC 4374 because it satisfied the phase referencing requirements: nearby to the source and sufficiently strong. Having observed M87 for a long integration time, we have detected its sub-parsec jet, allowing us to confirm previous high resolution observations made by Junor, Biretta & Livio, who have indicated that a wide opening angle was seen near the base of the jet. Phase referencing successfully improved our image sensitivity, yielding detections and providing accurate positions for NGC 4278, NGC 4374 and NGC 6166. These sources are point dominated, but show suggestions of extended structure in the direction of the large-scale jets. However, higher sensitivity will be required to study their sub-parsec jet structure

    The IRAS Revised Bright Galaxy Sample (RBGS)

    Full text link
    IRAS flux densities, redshifts, and infrared luminosities are reported for all sources identified in the IRAS Revised Bright Galaxy Sample (RBGS), a complete flux-limited survey of all extragalactic objects with total 60 micron flux density greater than 5.24 Jy, covering the entire sky surveyed by IRAS at Galactic latitude |b| > 5 degrees. The RBGS includes 629 objects, with a median (mean) sample redshift of 0.0082 (0.0126) and a maximum redshift of 0.0876. The RBGS supersedes the previous two-part IRAS Bright Galaxy Samples, which were compiled before the final ("Pass 3") calibration of the IRAS Level 1 Archive in May 1990. The RBGS also makes use of more accurate and consistent automated methods to measure the flux of objects with extended emission. Basic properties of the RBGS sources are summarized, including estimated total infrared luminosities, as well as updates to cross-identifications with sources from optical galaxy catalogs established using the NASA/IPAC Extragalactic Database (NED). In addition, an atlas of images from the Digitized Sky Survey with overlays of the IRAS position uncertainty ellipse and annotated scale bars is provided for ease in visualizing the optical morphology in context with the angular and metric size of each object. The revised bolometric infrared luminosity function, phi(L_ir), for infrared bright galaxies in the local Universe remains best fit by a double power law, phi(L_ir) ~ L_ir^alpha, with alpha = -0.6 (+/- 0.1), and alpha = -2.2 (+/- 0.1) below and above the "characteristic" infrared luminosity L_ir ~ 10^{10.5} L_solar, respectively. (Abridged)Comment: Accepted for publication in the Astronomical Journal. Contains 50 pages, 7 tables, 16 figures. Due to astro-ph space limits, only 1 of 26 pages of Figure 1, and 1 of 11 pages of Table 7, are included; full resolution Postscript files are available at http://nedwww.ipac.caltech.edu/level5/March03/IRAS_RBGS/Figures/ . Replacement: Corrected insertion of Fig. 15 (MethodCodes.ps) in LaTe

    Radio Jet-Ambient Medium Interactions on Parsec Scales in the Blazar 1055+018

    Full text link
    As part of our study of the magnetic fields of AGN we have recently observed a large sample of blazars with the Very Long Baseline Array. Here we report the discovery of a striking two-component jet in the source 1055+018, consisting of an inner spine with a transverse magnetic field, and a fragmentary but distinct boundary layer with a longitudinal magnetic field. The polarization distribution in the spine strongly supports shocked-jet models while that in the boundary layer suggests interaction with the surrounding medium. This behavior suggests a new way to understand the differing polarization properties of strong- and weak-lined blazars.Comment: LaTex; 10 pages; 6 figures; reference fix; to appear in ApJL, 518, 1999 June 2

    Reconfigurable controlled two-qubit operation on a quantum photonic chip

    Get PDF
    Integrated quantum photonics is an appealing platform for quantum information processing, quantum communication and quantum metrology. In all these applications it is necessary not only to be able to create and detect Fock states of light but also to program the photonic circuits that implements some desired logical operation. Here we demonstrate a reconfigurable controlled two-qubit operation on a chip using a multiwaveguide interferometer with a tunable phase shifter. We find excellent agreement between theory and experiment, with a 0.98 \pm 0.02 average similarity between measured and ideal operations

    PCR for the detection of pathogens in neonatal early onset sepsis.

    Get PDF
    BACKGROUND: A large proportion of neonates are treated for presumed bacterial sepsis with broad spectrum antibiotics even though their blood cultures subsequently show no growth. This study aimed to investigate PCR-based methods to identify pathogens not detected by conventional culture. METHODS: Whole blood samples of 208 neonates with suspected early onset sepsis were tested using a panel of multiplexed bacterial PCRs targeting Streptococcus pneumoniae, Streptococcus agalactiae (GBS), Staphylococcus aureus, Streptococcus pyogenes (GAS), Enterobacteriaceae, Enterococcus faecalis, Enterococcus faecium, Ureaplasma parvum, Ureaplasma urealyticum, Mycoplasma hominis and Mycoplasma genitalium, a 16S rRNA gene broad-range PCR and a multiplexed PCR for Candida spp. RESULTS: Two-hundred and eight samples were processed. In five of those samples, organisms were detected by conventional culture; all of those were also identified by PCR. PCR detected bacteria in 91 (45%) of the 203 samples that did not show bacterial growth in culture. S. aureus, Enterobacteriaceae and S. pneumoniae were the most frequently detected pathogens. A higher bacterial load detected by PCR was correlated positively with the number of clinical signs at presentation. CONCLUSION: Real-time PCR has the potential to be a valuable additional tool for the diagnosis of neonatal sepsis

    The XMM-Newton Detection of Diffuse Inverse Compton X-rays from Lobes of the FR-II Radio Galaxy 3C98

    Full text link
    The XMM-Newton observation of the nearby FR-II radio galaxy 3C 98 is reported. In two exposures on the target, faint diffuse X-ray emission associated with the radio lobes was significantly detected, together with a bright X-ray active nucleus, of which the 2 -- 10 keV intrinsic luminosity is (4 -- 8) \times 10^{42} erg s-1. The EPIC spectra of the northern and southern lobes are reproduced by a single power law model modified by the Galactic absorption, with a photon index of 2.2-0.5+0.6 and 1.7-0.6+0.7 respectively. These indices are consistent with that of the radio synchrotron spectrum, 1.73 +- 0.01 The luminosity of the northern and southern lobes are measured to be 8.3-2.6+3.3 \times 10^{40} erg s-1 and 9.2-4.3+5.7 \times 10^{40} erg s-1, respectively, in the 0.7 -- 7 keV range. The diffuse X-ray emission is interpreted as an inverse-Compton emission, produced when the synchrotron-emitting energetic electrons in the lobes scatter off the cosmic microwave background photons. The magnetic field in the lobes is calculated to be about 1.7 \mu G, which is about 2.5 times lower than the value estimated under the minimum energy condition. The energy density of the electrons is inferred to exceed that in the magnetic fields by a factor of 40 -- 50.Comment: 23 pages, 7 figures. Accepted for publication in the Astrophysical Journa

    Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities

    Get PDF
    In this paper we consider instabilities of localised solutions in planar neural field firing rate models of Wilson-Cowan or Amari type. Importantly we show that angular perturbations can destabilise spatially localised solutions. For a scalar model with Heaviside firing rate function we calculate symmetric one-bump and ring solutions explicitly and use an Evans function approach to predict the point of instability and the shapes of the dominant growing modes. Our predictions are shown to be in excellent agreement with direct numerical simulations. Moreover, beyond the instability our simulations demonstrate the emergence of multi-bump and labyrinthine patterns. With the addition of spike-frequency adaptation, numerical simulations of the resulting vector model show that it is possible for structures without rotational symmetry, and in particular multi-bumps, to undergo an instability to a rotating wave. We use a general argument, valid for smooth firing rate functions, to establish the conditions necessary to generate such a rotational instability. Numerical continuation of the rotating wave is used to quantify the emergent angular velocity as a bifurcation parameter is varied. Wave stability is found via the numerical evaluation of an associated eigenvalue problem

    VLBI Polarimetry of 177 Sources from the Caltech-Jodrell Bank Flat-spectrum Survey

    Get PDF
    We present VLBA observations and a statistical analysis of 5 GHz VLBI polarimetry data from 177 sources in the Caltech-Jodrell Bank flat-spectrum (CJF) survey. The CJF survey, a complete, flux-density-limited sample of 293 extragalactic radio sources, gives us the unique opportunity to compare a broad range of source properties for quasars, galaxies and BL Lacertae objects. We focus primarily on jet properties, specifically the correlation between the jet axis angle and the polarization angle in the core and jet. A strong correlation is found for the electric vector polarization angle in the cores of quasars to be perpendicular to the jet axis. Contrary to previous claims, no correlation is found between the jet polarization angle and the jet axis in either quasars or BL Lac objects. With this large, homogeneous sample we are also able to investigate cosmological issues and AGN evolution.Comment: Accepted to the Astrophysical Journal: 37 pages, 14 figure

    870 micron observations of nearby 3CRR radio galaxies

    Full text link
    We present submillimeter continuum observations at 870 microns of the cores of low redshift 3CRR radio galaxies, observed at the Heinrich Hertz Submillimeter Telescope. The cores are nearly flat spectrum between the radio and submillimeter which implies that the submillimeter continuum is likely to be synchrotron emission and not thermal emission from dust. The emitted power from nuclei detected at optical wavelengths and in the X-rays is similar in the submillimeter, optical and X-rays. The submillimeter to optical and X-ray power ratios suggest that most of these sources resemble misdirected BL Lac type objects with synchrotron emission peaking at low energies. However we find three exceptions, the FR I galaxy 3C264 and the FR II galaxies 3C390.3 and 3C338 with high X-ray to submillimeter luminosity ratios. These three objects are candidate high or intermediate energy peaked BL Lac type objects. With additional infrared observations and from archival data, we compile spectral energy distributions (SEDs) for a subset of these objects. The steep dips observed near the optical wavelengths in many of these objects suggest that extinction inhibits the detection and reduces the flux of optical continuum core counterparts. High resolution near or mid-infrared imaging may provide better measurements of the underlying synchrotron emission peak.Comment: accepted for publication in A

    Jet Acceleration by Tangled Magnetic Fields

    Get PDF
    We explore the possibility that extragalactic radio jets might be accelerated by highly disorganized magnetic fields that are strong enough to dominate the dynamics until the terminal Lorentz factor is reached. Following the twin-exhaust model by Blandford & Rees (1974), the collimation under this scenario is provided by the stratified thermal pressure from an external medium. The acceleration efficiency then depends on the pressure gradient of that medium. In order for this mechanism to work there must be continuous tangling of the magnetic field, changing the magnetic equation of state away from pure flux freezing (otherwise conversion of Poynting flux to kinetic energy flux is suppressed). This is a complementary approach to models in which the plasma is accelerated by large scale ordered fields. We include a simple prescription for magnetic dissipation, which leads to tradeoffs among conversion of magnetic energy into bulk kinetic energy, random particle energy, and radiation. We present analytic dynamical solutions of such jets, assess the effects of radiation drag, and comment on observational issues, such as the predicted polarization and synchrotron brightness. Finally, we try to make the connection to observed radio galaxies and gamma-ray bursts.Comment: 15 pages, 10 figures, accepted for publication in Ap
    • 

    corecore