135 research outputs found

    Harnessing technology to enable all women mobility in labour and birth: feasibility of implementing beltless non-invasive fetal ECG applying the NASSS framework.

    Full text link
    Background A new wireless and beltless monitoring device utilising fetal and maternal electrocardiography (ECG) and uterine electromyography, known as ‘non-invasive fetal ECG’ (NIFECG) was registered for clinical use in Australia in 2018. The safety and reliability of NIFECG has been demonstrated in controlled settings for short periods during labour. As far as we are aware, at the time our study commenced, this was globally the first trial of such a device in an authentic clinical setting for the entire duration of a woman’s labour. Methods This study aimed to assess the feasibility of using NIFECG fetal monitoring for women undergoing continuous electronic fetal monitoring during labour and birth. Women were eligible to participate in the study if they were at 36 weeks gestation or greater with a singleton pregnancy, planning to give birth vaginally and with obstetric indications as per local protocol (NSW Health Fetal Heart Rate Monitoring Guideline GL2018_025. 2018) for continuous intrapartum fetal monitoring. Written informed consent was received from participating women in antenatal clinic prior to the onset of labour. This single site clinical feasibility study took place between January and July 2020 at the Royal Hospital for Women in Sydney, Australia. Quantitative and qualitative data were collected to inform the analysis of results using the NASSS (Non-adoption, Abandonment, Scale up, Spread and Sustainability) framework, a validated tool for analysing the implementation of new health technologies into clinical settings. Results Women responded positively about the comfort and freedom of movement afforded by the NIFECG. Midwives reported that when no loss of contact occurred, the device enabled them to focus less on the technology and more on supporting women’s physical and emotional needs during labour. Midwives and obstetricians noticed the benefits for women but expressed a need for greater certainty about the reliability of the signal. Conclusion The NIFECG device enables freedom of movement and positioning for labouring women and was well received by women and the majority of clinicians. Whilst measurement of the uterine activity was reliable, there was uncertainty for clinicians in relation to loss of contact of the fetal heart rate. If this can be ameliorated the device shows potential to be used as routinely as cardiotocography (CTG) for fetal monitoring. This is the first time the NASSS framework has been used to synthesise the implementation needs of a health technology in the care of women during labour and birth. Our findings contribute new knowledge about the determinants for implementation of a complex technology in a maternity care setting. Trial registration The Universal Trial Number is reU1111-1228-9845 and the Australian and New Zealand Clinical Trial Registration Number is 12619000293167p. Trial registration occurred on the 20 February, 2019. The trial protocol may be viewed at http://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=37702

    A randomised controlled trial of caseload midwifery care: M@NGO (Midwives @ New Group practice Options)

    Full text link
    Background: Australia has an enviable record of safety for women in childbirth. There is nevertheless growing concern at the increasing level of intervention and consequent morbidity amongst childbearing women. Not only do interventions impact on the cost of services, they carry with them the potential for serious morbidities for mother and infant.Models of midwifery have proliferated in an attempt to offer women less fragmented hospital care. One of these models that is gaining widespread consumer, disciplinary and political support is caseload midwifery care. Caseload midwives manage the care of approximately 35-40 a year within a small Midwifery Group Practice (usually 4-6 midwives who plan their on call and leave within the Group Practice.) We propose to compare the outcomes and costs of caseload midwifery care compared to standard or routine hospital care through a randomised controlled trial.Methods/design: A two-arm RCT design will be used. Women will be recruited from tertiary women's hospitals in Sydney and Brisbane, Australia. Women allocated to the caseload intervention will receive care from a named caseload midwife within a Midwifery Group Practice. Control women will be allocated to standard or routine hospital care. Women allocated to standard care will receive their care from hospital rostered midwives, public hospital obstetric care and community based general medical practitioner care. All midwives will collaborate with obstetricians and other health professionals as necessary according to the woman's needs.Discussion: Data will be collected at recruitment, 36 weeks antenatally, six weeks and six months postpartum by web based or postal survey. With 750 women or more in each of the intervention and control arms the study is powered (based on 80% power; alpha 0.05) to detect a difference in caesarean section rates of 29.4 to 22.9%; instrumental birth rates from 11.0% to 6.8%; and rates of admission to neonatal intensive care of all neonates from 9.9% to 5.8% (requires 721 in each arm). The study is not powered to detect infant or maternal mortality, however all deaths will be reported. Other significant findings will be reported, including a comprehensive process and economic evaluation.Trial registration: Australian New Zealand Clinical Trials Registry ACTRN12609000349246. © 2011 Tracy et al; licensee BioMed Central Ltd

    Nesiritide: Harmful or Harmless?

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90328/1/phco.26.10.1465.pd

    Urocortin 2 Infusion in Healthy Humans Hemodynamic, Neurohormonal, and Renal Responses

    Get PDF
    ObjectivesWe sought to examine the effects of urocortin (UCN) 2 infusion on hemodynamic status, cardiovascular hormones, and renal function in healthy humans.BackgroundUrocortin 2 is a vasoactive and cardioprotective peptide belonging to the corticotrophin-releasing factor peptide family. Recent reports indicate the urocortins exert important effects beyond the hypothalamo-pituitary-adrenal axis upon cardiovascular and vasohumoral function in health and cardiac disease.MethodsWe studied 8 healthy unmedicated men on 3 separate occasions 2 to 5 weeks apart. Subjects received placebo, 25-μg low-dose (LD), and 100-μg high-dose (HD) of UCN 2 intravenously over the course of 1 h in a single-blind, placebo-controlled, dose-escalation design. Noninvasive hemodynamic indexes, neurohormones, and renal function were measured.ResultsThe administration of UCN 2 dose-dependently increased cardiac output (mean peak increments ± SEM) (placebo 0.5 ± 0.2 l/min; LD 2.1 ± 0.6 l/min; HD 5.0 ± 0.8 l/min; p < 0.001), heart rate (placebo 3.3 ± 1.0 beats/min; LD 8.8 ± 1.8 beats/min; HD 17.8 ± 2.1 beats/min; p < 0.001), and left ventricular ejection fraction (placebo 0.6 ± 1.4%; LD 6.6 ± 1.5%; HD 14.1 ± 0.8%; p < 0.001) while decreasing systemic vascular resistance (placebo −128 ± 50 dynes·s/cm5; LD −407 ± 49 dynes·s/cm5; HD −774 ± 133 dynes·s/cm5; p < 0.001). Activation of plasma renin activity (p = 0.002), angiotensin II (p = 0.001), and norepinephrine (p < 0.001) occurred only with the higher 100-μg dose. Subtle decreases in urine volume (p = 0.012) and natriuresis (p = 0.001) were observed.ConclusionsBrief intravenous infusions of UCN 2 in healthy humans induced pronounced dose-related increases in cardiac output, heart rate, and left ventricular ejection fraction while decreasing systemic vascular resistance. Subtle renal effects and activation of plasma renin, angiotensin II, and norepinephrine (at high-dose only) were observed. These findings warrant further investigation of the role of UCN 2 in circulatory regulation and its potential therapeutic application in heart disease

    The clinical development candidate CCT245737 is an orally active CHK1 inhibitor with preclinical activity in RAS mutant NSCLC and Eµ-MYC driven B-cell lymphoma.

    Get PDF
    CCT245737 is the first orally active, clinical development candidate CHK1 inhibitor to be described. The IC50 was 1.4 nM against CHK1 enzyme and it exhibited>1,000-fold selectivity against CHK2 and CDK1. CCT245737 potently inhibited cellular CHK1 activity (IC50 30-220 nM) and enhanced gemcitabine and SN38 cytotoxicity in multiple human tumor cell lines and human tumor xenograft models. Mouse oral bioavailability was complete (100%) with extensive tumor exposure. Genotoxic-induced CHK1 activity (pS296 CHK1) and cell cycle arrest (pY15 CDK1) were inhibited both in vitro and in human tumor xenografts by CCT245737, causing increased DNA damage and apoptosis. Uniquely, we show CCT245737 enhanced gemcitabine antitumor activity to a greater degree than for higher doses of either agent alone, without increasing toxicity, indicating a true therapeutic advantage for this combination. Furthermore, development of a novel ELISA assay for pS296 CHK1 autophosphorylation, allowed the quantitative measurement of target inhibition in a RAS mutant human tumor xenograft of NSCLC at efficacious doses of CCT245737. Finally, CCT245737 also showed significant single-agent activity against a MYC-driven mouse model of B-cell lymphoma. In conclusion, CCT245737 is a new CHK1 inhibitor clinical development candidate scheduled for a first in man Phase I clinical trial, that will use the novel pS296 CHK1 ELISA to monitor target inhibition

    Monitoring of heart failure: comparison of left atrial pressure with intrathoracic impedance and natriuretic peptide measurements in an experimental model of ovine heart failure

    Get PDF
    Monitoring of HF (heart failure) with intracardiac pressure, intrathoracic impedance and/or natriuretic peptide levels has been advocated. We aimed to investigate possible differences in the response patterns of each of these monitoring modalities during HF decompensation that may have an impact on the potential for early therapeutic intervention. Six sheep were implanted with a LAP (left atrial pressure) sensor and a CRT-D (cardiac resynchronization therapy defibrillator) capable of monitoring impedance along six lead configuration vectors. An estimate of ALAP (LAP from admittance) was determined by linear regression. HF was induced by rapid ventricular pacing at 180 and 220 bpm (beats/min) for a week each, followed by a third week with daily pacing suspensions for increasing durations (1–5 h). Incremental pacing induced progressively severe HF reflected in increases in LAP (5.9 ± 0.4 to 24.5 ± 1.6 mmHg) and plasma atrial (20 ± 3 to 197 ± 36 pmol/l) and B-type natriuretic peptide (3.7 ± 0.7 to 32.7 ± 5.4 pmol/l) (all P<0.001) levels. All impedance vectors decreased in proportion to HF severity (all P<0.001), with the LVring (left ventricular)-case vector correlating best with LAP (r2=0.63, P<0.001). Natriuretic peptides closely paralleled rapid acute changes in LAP during alterations in pacing (P<0.001), whereas impedance changes were delayed relative to LAP. ALAP exhibited good agreement with LAP. In summary, impedance measured with an LV lead correlates significantly with changes in LAP, but exhibits a delayed response to acute alterations. Natriuretic peptides respond rapidly to acute LAP changes. Direct LAP, impedance and natriuretic peptide measurements all show promise as early indicators of worsening HF. ALAP provides an estimate of LAP that may be clinically useful

    Cardiac Dysfunction, Congestion and Loop Diuretics: their Relationship to Prognosis in Heart Failure

    Get PDF
    Background: Diuretics are the mainstay of treatment for congestion but concerns exist that they adversely affect prognosis. We explored whether the relationship between loop diuretic use and outcome is explained by the underlying severity of congestion amongst patients referred with suspected heart failure. Method and Results: Of 1190 patients, 712 had a left ventricular ejection fraction (LVEF) ≤50 %, 267 had LVEF >50 % with raised plasma NTproBNP (>400 ng/L) and 211 had LVEF >50 % with NTproBNP ≤400 ng/L; respectively, 72 %, 68 % and 37 % of these groups were treated with loop diuretics including 28 %, 29 % and 10 % in doses ≥80 mg furosemide equivalent/day. Compared to patients with cardiac dysfunction (either LVEF ≤50 % or NT-proBNP >400 ng/L) but not taking a loop diuretic, those taking a loop diuretic were older and had more clinical evidence of congestion, renal dysfunction, anaemia and hyponatraemia. During a median follow-up of 934 (IQR: 513–1425) days, 450 patients were hospitalized for HF or died. Patients prescribed loop diuretics had a worse outcome. However, in multi-variable models, clinical, echocardiographic (inferior vena cava diameter), and biochemical (NTproBNP) measures of congestion were strongly associated with an adverse outcome but not the use, or dose, of loop diuretics. Conclusions: Prescription of loop diuretics identifies patients with more advanced features of heart failure and congestion, which may account for their worse prognosis. Further research is needed to clarify the relationship between loop diuretic agents and outcome; imaging and biochemical measures of congestion might be better guides to diuretic dose than symptoms or clinical signs

    The utility of B-type natriuretic peptide in the diagnosis of heart failure in the emergency department: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dyspnea is a common chief complaint in the emergency department (ED); differentiating heart failure (HF) from other causes can be challenging. Brain Natriuretic Peptide (BNP) is a new diagnostic test for HF for use in dyspneic patients in the ED. The purpose of this study is to systematically review the accuracy of BNP in the emergency diagnosis of HF.</p> <p>Methods</p> <p>We searched MEDLINE (1975–2005) supplemented by reference tracking. We included studies that reported the sensitivity and specificity of BNP for diagnosing HF in ED patients with acute dyspnea. Two reviewers independently assessed study quality. We pooled sensitivities and specificities within five ranges of BNP cutoffs.</p> <p>Results</p> <p>Ten studies including 3,344 participants met inclusion criteria. Quality was variable; possible verification or selection bias was common. No studies eliminated patients with obvious medical causes of dyspnea. Most studies used the Triage BNP assay; all utilized a clinical reference standard. Pooled sensitivity and specificity at a BNP cutoff of 100–105 pg/ml were 90% and 74% with negative likelihood ratio (LR) of 0.14; pooled sensitivity was 81% with specificity of 90% at cutoffs between 300 and 400 pg/ml with positive LR of 7.6.</p> <p>Conclusion</p> <p>Our analysis suggests that BNP has moderate accuracy in detecting HF in the ED. Our results suggest utilizing a BNP of less than 100 pg/ml to rule out HF and a BNP of greater than 400 pg/ml to diagnose HF. Many studies were of marginal quality, and all included patients with varying degrees of diagnostic uncertainty. Further studies focusing on patients with diagnostic uncertainty will clarify the real-world utility of BNP in the emergency management of dyspnea.</p

    Multiparameter Lead Optimization to Give an Oral Checkpoint Kinase 1 (CHK1) Inhibitor Clinical Candidate: (R)-5-((4-((Morpholin-2-ylmethyl)amino)-5-(trifluoromethyl)pyridin-2-yl)amino)pyrazine-2-carbonitrile (CCT245737)

    Get PDF
    Multiparameter optimization of a series of 5-((4-aminopyridin-2-yl)amino)pyrazine-2-carbonitriles resulted in the identification of a potent and selective oral CHK1 preclinical development candidate with in vivo efficacy as a potentiator of deoxyribonucleic acid (DNA) damaging chemotherapy and as a single agent. Cellular mechanism of action assays were used to give an integrated assessment of compound selectivity during optimization resulting in a highly CHK1 selective adenosine triphosphate (ATP) competitive inhibitor. A single substituent vector directed away from the CHK1 kinase active site was unexpectedly found to drive the selective cellular efficacy of the compounds. Both CHK1 potency and off-target human ether-a-go-go-related gene (hERG) ion channel inhibition were dependent on lipophilicity and basicity in this series. Optimization of CHK1 cellular potency and in vivo pharmacokinetic–pharmacodynamic (PK–PD) properties gave a compound with low predicted doses and exposures in humans which mitigated the residual weak in vitro hERG inhibition
    corecore