312 research outputs found

    Solving Two Conjectures regarding Codes for Location in Circulant Graphs

    Full text link
    Identifying and locating-dominating codes have been widely studied in circulant graphs of type Cn(1,2,…,r)C_n(1,2, \ldots, r), which can also be viewed as power graphs of cycles. Recently, Ghebleh and Niepel (2013) considered identification and location-domination in the circulant graphs Cn(1,3)C_n(1,3). They showed that the smallest cardinality of a locating-dominating code in Cn(1,3)C_n(1,3) is at least ⌈n/3⌉\lceil n/3 \rceil and at most ⌈n/3⌉+1\lceil n/3 \rceil + 1 for all n≥9n \geq 9. Moreover, they proved that the lower bound is strict when n≡0,1,4(mod6)n \equiv 0, 1, 4 \pmod{6} and conjectured that the lower bound can be increased by one for other nn. In this paper, we prove their conjecture. Similarly, they showed that the smallest cardinality of an identifying code in Cn(1,3)C_n(1,3) is at least ⌈4n/11⌉\lceil 4n/11 \rceil and at most ⌈4n/11⌉+1\lceil 4n/11 \rceil + 1 for all n≥11n \geq 11. Furthermore, they proved that the lower bound is attained for most of the lengths nn and conjectured that in the rest of the cases the lower bound can improved by one. This conjecture is also proved in the paper. The proofs of the conjectures are based on a novel approach which, instead of making use of the local properties of the graphs as is usual to identification and location-domination, also manages to take advantage of the global properties of the codes and the underlying graphs

    István Nyirkos 1933–2013

    Get PDF
    Nekrolog István Nyirkos 1933–201

    Optimal local identifying and local locating-dominating codes

    Full text link
    We introduce two new classes of covering codes in graphs for every positive integer rr. These new codes are called local rr-identifying and local rr-locating-dominating codes and they are derived from rr-identifying and rr-locating-dominating codes, respectively. We study the sizes of optimal local 1-identifying codes in binary hypercubes. We obtain lower and upper bounds that are asymptotically tight. Together the bounds show that the cost of changing covering codes into local 1-identifying codes is negligible. For some small nn optimal constructions are obtained. Moreover, the upper bound is obtained by a linear code construction. Also, we study the densities of optimal local 1-identifying codes and local 1-locating-dominating codes in the infinite square grid, the hexagonal grid, the triangular grid, and the king grid. We prove that seven out of eight of our constructions have optimal densities
    • …
    corecore