528 research outputs found

    University students’ use of mobile technology in self-directed language learning: using the integrative model of behavior prediction

    Get PDF
    Mobile technology offers great potential for university students’ language learning. Numerousstudies have been conducted on utilizing mobile technology in language learning classroom.However, using it in self-initiated and self-directed learning outside class remains to be explored.The present study employed the integrative model of behavior prediction to investigate the re-lationships between attitude, subjective norm, self-efficacy and behavioral intention, as well asthe association between intention, facilitating conditions, self-regulation skills and actual use ofmobile technology in self-directed language learning. This study also examined whether self-regulation skills moderated intention and actual use. Survey data from 676 language learnersin different disciplines from Chinese universities were collected and analyzed using structuralequation modeling approach. The results showed that 37.1 percent of respondents indicated thatthey never used mobile technology for self-directed language learning. Of the other 425 re-spondents who did indicate that they used mobile technology for this purpose, the majority ofthem seemed to be extrinsically motivated. Learning activities regarding vocabulary acquisitionand translation were far more reported than those in terms of listening, speaking, reading andwriting. In addition, attitude and subjective norm significantly explained students’ intention touse mobile technology, but self-efficacy did not have a direct effect on students’ intention.Moreover, students’ self-regulation skills and intention significantly predicted students’ actual useof mobile technology. Through moderation analysis, the results indicated that the relationshipbetween intention and actual behavior would be stronger with any increase in self-regulationskills. These findings are discussed and implications are formulated.Teaching and Teacher Learning (ICLON

    Triggering Threshold Spacecraft Charging with Changes in Electron Emission from Materials

    Get PDF
    Modest changes in spacecraft charging conditions can lead to abrupt changes in the spacecraft equilibrium, from small positive potentials to large negative potentials relative to the space plasma; this phenomenon is referred to as threshold charging. It is well known that temporal changes of the space plasma environment (electron plasma temperature or density) can cause threshold charging. Threshold charging can also result from by temporal changes in the juxtaposition of the spacecraft to the environment, including spacecraft orbit, orientation, and geometry. This study focuses on the effects of possible changes in electron emission properties of representative spacecraft materials. It is found that for electron-induced emission, the possible threshold scenarios are very rich, since this type of electron emission can cause either positive or negative charging. Alternately, modification of photon- or ion-induced electron emission is found to induce threshold charging only in certain favorable cases. Changes of emission properties discussed include modifications due to: contamination, degradation and roughening of surfaces and layered materials; biasing and charge accumulation; bandstructure occupation and density of states caused by heat, optical or particle radiation; optical reflectivity and absorptivity; and inaccuracies and errors in measurements and parameterization of materials properties. An established method is used here to quantitatively gauge the relative extent to which these various changes in electron emission alter a spacecraft’s charging behavior and possibly lead to threshold charging. The absolute charging behavior of a hypothetical flat, two-dimensional satellite panel of a single material (either polycrystalline conductor Au or the polymeric polyimide Kaptonℱ H) is modeled as it undergoes modification and concomitant changes in spacecraft charging in three representative geosynchronous orbit environments, from full sunlight to full shade (eclipse) are considered

    Asteroseismology of Eclipsing Binary Stars in the Kepler Era

    Full text link
    Eclipsing binary stars have long served as benchmark systems to measure fundamental stellar properties. In the past few decades, asteroseismology - the study of stellar pulsations - has emerged as a new powerful tool to study the structure and evolution of stars across the HR diagram. Pulsating stars in eclipsing binary systems are particularly valuable since fundamental properties (such as radii and masses) can determined using two independent techniques. Furthermore, independently measured properties from binary orbits can be used to improve asteroseismic modeling for pulsating stars in which mode identifications are not straightforward. This contribution provides a review of asteroseismic detections in eclipsing binary stars, with a focus on space-based missions such as CoRoT and Kepler, and empirical tests of asteroseismic scaling relations for stochastic ("solar-like") oscillations.Comment: 28 pages, 12 figures, 2 tables; Proceedings of the AAS topical conference "Giants of Eclipse" (AASTCS-3), July 28 - August 2 2013, Monterey, C

    Measurements of the observed cross sections for e+e−→e^+e^-\to exclusive light hadrons containing π0π0\pi^0\pi^0 at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV

    Full text link
    By analyzing the data sets of 17.3, 6.5 and 1.0 pb−1^{-1} taken, respectively, at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV with the BES-II detector at the BEPC collider, we measure the observed cross sections for e+e−→π+π−π0π0e^+e^-\to \pi^+\pi^-\pi^0\pi^0, K+K−π0π0K^+K^-\pi^0\pi^0, 2(π+π−π0)2(\pi^+\pi^-\pi^0), K+K−π+π−π0π0K^+K^-\pi^+\pi^-\pi^0\pi^0 and 3(π+π−)π0π03(\pi^+\pi^-)\pi^0\pi^0 at the three energy points. Based on these cross sections we set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay into these final states at 90% C.L..Comment: 7 pages, 2 figure

    Partial wave analysis of J/\psi \to \gamma \phi \phi

    Get PDF
    Using 5.8×107J/ψ5.8 \times 10^7 J/\psi events collected in the BESII detector, the radiative decay J/Ïˆâ†’ÎłÏ•Ï•â†’ÎłK+K−KS0KL0J/\psi \to \gamma \phi \phi \to \gamma K^+ K^- K^0_S K^0_L is studied. The ϕϕ\phi\phi invariant mass distribution exhibits a near-threshold enhancement that peaks around 2.24 GeV/c2c^{2}. A partial wave analysis shows that the structure is dominated by a 0−+0^{-+} state (η(2225)\eta(2225)) with a mass of 2.24−0.02+0.03−0.02+0.032.24^{+0.03}_{-0.02}{}^{+0.03}_{-0.02} GeV/c2c^{2} and a width of 0.19±0.03−0.04+0.060.19 \pm 0.03^{+0.06}_{-0.04} GeV/c2c^{2}. The product branching fraction is: Br(J/Ïˆâ†’ÎłÎ·(2225))⋅Br(η(2225)→ϕϕ)=(4.4±0.4±0.8)×10−4Br(J/\psi \to \gamma \eta(2225))\cdot Br(\eta(2225)\to \phi\phi) = (4.4 \pm 0.4 \pm 0.8)\times 10^{-4}.Comment: 11 pages, 4 figures. corrected proof for journa

    Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays

    Full text link
    By analyzing about 33 pb−1\rm pb^{-1} data sample collected at and around 3.773 GeV with the BES-II detector at the BEPC collider, we directly measure the branching fractions for the neutral and charged DD inclusive semimuonic decays to be BF(D0→Ό+X)=(6.8±1.5±0.7)BF(D^0 \to \mu^+ X) =(6.8\pm 1.5\pm 0.7)% and BF(D+→Ό+X)=(17.6±2.7±1.8)BF(D^+ \to \mu^+ X) =(17.6 \pm 2.7 \pm 1.8)%, and determine the ratio of the two branching fractions to be BF(D+→Ό+X)BF(D0→Ό+X)=2.59±0.70±0.25\frac{BF(D^+ \to \mu^+ X)}{BF(D^0 \to \mu^+ X)}=2.59\pm 0.70 \pm 0.25

    Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-

    Full text link
    We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi --> D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7 J/Psi events collected with the BESII detector at the BEPC. No excess of signal above background is observed, and 90% confidence level upper limits on the branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi --> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure

    Direct Measurements of the Branching Fractions for D0→K−e+ÎœeD^0 \to K^-e^+\nu_e and D0→π−e+ÎœeD^0 \to \pi^-e^+\nu_e and Determinations of the Form Factors f+K(0)f_{+}^{K}(0) and f+π(0)f^{\pi}_{+}(0)

    Get PDF
    The absolute branching fractions for the decays D0→K−e+ÎœeD^0 \to K^-e ^+\nu_e and D0→π−e+ÎœeD^0 \to \pi^-e^+\nu_e are determined using 7584±198±3417584\pm 198 \pm 341 singly tagged Dˉ0\bar D^0 sample from the data collected around 3.773 GeV with the BES-II detector at the BEPC. In the system recoiling against the singly tagged Dˉ0\bar D^0 meson, 104.0±10.9104.0\pm 10.9 events for D0→K−e+ÎœeD^0 \to K^-e ^+\nu_e and 9.0±3.69.0 \pm 3.6 events for D0→π−e+ÎœeD^0 \to \pi^-e^+\nu_e decays are observed. Those yield the absolute branching fractions to be BF(D0→K−e+Îœe)=(3.82±0.40±0.27)BF(D^0 \to K^-e^+\nu_e)=(3.82 \pm 0.40\pm 0.27)% and BF(D0→π−e+Îœe)=(0.33±0.13±0.03)BF(D^0 \to \pi^-e^+\nu_e)=(0.33 \pm 0.13\pm 0.03)%. The vector form factors are determined to be ∣f+K(0)∣=0.78±0.04±0.03|f^K_+(0)| = 0.78 \pm 0.04 \pm 0.03 and ∣f+π(0)∣=0.73±0.14±0.06|f^{\pi}_+(0)| = 0.73 \pm 0.14 \pm 0.06. The ratio of the two form factors is measured to be ∣f+π(0)/f+K(0)∣=0.93±0.19±0.07|f^{\pi}_+(0)/f^K_+(0)|= 0.93 \pm 0.19 \pm 0.07.Comment: 6 pages, 5 figure

    Study of J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar

    Full text link
    The branching ratios and Angular distributions for J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar are measured using BESII 58 million J/psi.Comment: 11 pages, 5 figure
    • 

    corecore