118 research outputs found
Atenolol versus losartan in children and young adults with Marfan's syndrome
BACKGROUND : Aortic-root dissection is the leading cause of death in Marfan's syndrome. Studies suggest that with regard to slowing aortic-root enlargement, losartan may be more effective than beta-blockers, the current standard therapy in most centers.
METHODS : We conducted a randomized trial comparing losartan with atenolol in children and young adults with Marfan's syndrome. The primary outcome was the rate of aortic-root enlargement, expressed as the change in the maximum aortic-root-diameter z score indexed to body-surface area (hereafter, aortic-root z score) over a 3-year period. Secondary outcomes included the rate of change in the absolute diameter of the aortic root; the rate of change in aortic regurgitation; the time to aortic dissection, aortic-root surgery, or death; somatic growth; and the incidence of adverse events.
RESULTS : From January 2007 through February 2011, a total of 21 clinical centers enrolled 608 participants, 6 months to 25 years of age (mean [+/- SD] age, 11.5 +/- 6.5 years in the atenolol group and 11.0 +/- 6.2 years in the losartan group), who had an aorticroot z score greater than 3.0. The baseline-adjusted rate of change (+/- SE) in the aortic-root z score did not differ significantly between the atenolol group and the losartan group (-0.139 +/- 0.013 and -0.107 +/- 0.013 standard-deviation units per year, respectively; P = 0.08). Both slopes were significantly less than zero, indicating a decrease in the degree of aortic-root dilatation relative to body-surface area with either treatment. The 3-year rates of aortic-root surgery, aortic dissection, death, and a composite of these events did not differ significantly between the two treatment groups.
CONCLUSIONS : Among children and young adults with Marfan's syndrome who were randomly assigned to losartan or atenolol, we found no significant difference in the rate of aorticroot dilatation between the two treatment groups over a 3-year period
Parton-Hadron Duality in Unpolarised and Polarised Structure Functions
We study the phenomenon of parton-hadron duality in both polarised and
unpolarised electron proton scattering using the HERMES and the Jefferson Lab
data, respectively. In both cases we extend a systematic perturbative QCD based
analysis to the integrals of the structure functions in the resonance region.
After subtracting target mass corrections and large x resummation effects, we
extract the remaining power corrections up to order 1/Q^2. We find a sizeable
suppression of these terms with respect to analyses using deep inelastic
scattering data. The suppression appears consistently in both polarised and
unpolarised data, except for the low Q^2 polarised data, where a large negative
higher twist contribution remains. Possible scenarios generating this behavior
are discussed.Comment: 17 pages, 9 figure
Heavy-quark mass dependence in global PDF analyses and 3- and 4-flavour parton distributions
We study the sensitivity of our recent MSTW 2008 NLO and NNLO PDF analyses to
the values of the charm- and bottom-quark masses, and we provide additional
public PDF sets for a wide range of these heavy-quark masses. We quantify the
impact of varying m_c and m_b on the cross sections for W, Z and Higgs
production at the Tevatron and the LHC. We generate 3- and 4-flavour versions
of the (5-flavour) MSTW 2008 PDFs by evolving the input PDFs and alpha_S
determined from fits in the 5-flavour scheme, including the eigenvector PDF
sets necessary for calculation of PDF uncertainties. As an example of their
use, we study the difference in the Z total cross sections at the Tevatron and
LHC in the 4- and 5-flavour schemes. Significant differences are found,
illustrating the need to resum large logarithms in Q^2/m_b^2 by using the
5-flavour scheme. The 4-flavour scheme is still necessary, however, if cuts are
imposed on associated (massive) b-quarks, as is the case for the experimental
measurement of Z b bbar production and similar processes.Comment: 40 pages, 11 figures. Grids can be found at
http://projects.hepforge.org/mstwpdf/ and in LHAPDF V5.8.4. v2: version
published in EPJ
Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity
A formalism for studying spontaneous decay of an excited two-level atom in
the presence of dispersing and absorbing dielectric bodies is developed. An
integral equation, which is suitable for numerical solution, is derived for the
atomic upper-state-probability amplitude. The emission pattern and the power
spectrum of the emitted light are expressed in terms of the Green tensor of the
dielectric-matter formation including absorption and dispersion. The theory is
applied to the spontaneous decay of an excited atom at the center of a
three-layered spherical cavity, with the cavity wall being modeled by a
band-gap dielectric of Lorentz type. Both weak coupling and strong coupling are
studied, the latter with special emphasis on the cases where the atomic
transition is (i) in the normal-dispersion zone near the medium resonance and
(ii) in the anomalous-dispersion zone associated with the band gap. In a
single-resonance approximation, conditions of the appearance of Rabi
oscillations and closed solutions to the evolution of the atomic state
population are derived, which are in good agreement with the exact numerical
results.Comment: 12 pages, 6 figures, typos fixed, 1 figure adde
Global QCD Analysis and the CTEQ Parton Distributions
The CTEQ program for the determination of parton distributions through a
global QCD analysis of data for various hard scattering processes is fully
described. A new set of distributions, CTEQ3, incorporating several new types
of data is reported and compared to the two previous sets of CTEQ
distributions. Comparison with current data is discussed in some detail. The
remaining uncertainties in the parton distributions and methods to further
reduce them are assessed. Comparisons with the results of other global analyses
are also presented.Comment: (Change in Latex style only: 2up style removed since many don't have
it.) 35 pages, 23 figures separately submitted as uuencoded compressed
ps-file; Michigan State Report # MSU-HEP/41024 and CTEQ 40
Dynamical parton distributions of the nucleon and very small-x physics
Utilizing recent DIS measurements (F_{2,L}) and data on dilepton and
high-E_{T} jet production we determine the dynamical parton distributions of
the nucleon generated radiatively from valence-like positive input
distributions at optimally chosen low resolution scales. These are compared
with `standard' distributions generated from positive input distributions at
some fixed and higher resolution scale. It is shown that up to the next to
leading order NLO(\bar{MS}, DIS) of perturbative QCD considered in this paper,
the uncertainties of the dynamical distributions are, as expected, smaller than
those of their standard counterparts. This holds true in particular in the
presently unexplored extremely small-x region relevant for evaluating ultrahigh
energy cross sections in astrophysical applications. It is noted that our new
dynamical distributions are compatible, within the presently determined
uncertainties, with previously determined dynamical parton distributions.Comment: 21 pages, 2 tables, 16 figures, v2: added Ref.[60], replaced Fig.
Neutron structure function and inclusive DIS from H-3 and He-3 at large Bjorken-x
A detailed study of inclusive deep inelastic scattering (DIS) from mirror A =
3 nuclei at large values of the Bjorken variable x is presented. The main
purpose is to estimate the theoretical uncertainties on the extraction of the
neutron DIS structure function from such nuclear measurements. On one hand,
within models in which no modification of the bound nucleon structure functions
is taken into account, we have investigated the possible uncertainties arising
from: i) charge symmetry breaking terms in the nucleon-nucleon interaction, ii)
finite Q**2 effects neglected in the Bjorken limit, iii) the role of different
prescriptions for the nucleon Spectral Function normalization providing baryon
number conservation, and iv) the differences between the virtual nucleon and
light cone formalisms. Although these effects have been not yet considered in
existing analyses, our conclusion is that all these effects cancel at the level
of ~ 1% for x < 0.75 in overall agreement with previous findings. On the other
hand we have considered several models in which the modification of the bound
nucleon structure functions is accounted for to describe the EMC effect in DIS
scattering from nuclei. It turns out that within these models the cancellation
of nuclear effects is expected to occur only at a level of ~ 3%, leading to an
accuracy of ~ 12 % in the extraction of the neutron to proton structure
function ratio at x ~ 0.7 -0.8$. Another consequence of considering a broad
range of models of the EMC effect is that the previously suggested iteration
procedure does not improve the accuracy of the extraction of the neutron to
proton structure function ratio.Comment: revised version to appear in Phys. Rev. C; main modifications in
Section 4; no change in the conclusion
Measurements of the Mass and Full-Width of the Meson
In a sample of 58 million events collected with the BES II detector,
the process J/ is observed in five different decay
channels: , , (with ), (with
) and . From a combined fit of all five
channels, we determine the mass and full-width of to be
MeV/ and
MeV/.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
- …