188 research outputs found

    Correction of phase offset errors in cardiovascular magnetic resonance using background subtraction from stationary tissue

    Get PDF
    Introduction: Phase offset errors from local eddy currents can lead to significant errors in flow assessment on clinical cardiovascular magnetic resonance (CMR) examinations. Phantom correction for phase contrast (PC) errors appears to improve accuracy in flow assessment, but requires additional time and is not free from technical limitations. Background subtraction using a region of stationary tissue has been proposed as an alternative method for the correction of phase offset errors. Purpose: To assess the validity of background correction using stationary tissue in the chest wall with stationary phantom correction for flow measurements in clinical practice. Methods: The clinical congenital CMR imaging database from July 2009 to May 2010 at our institution was searched for pts with: 1) no systemic-to-pulmonary shunt by echocardiography, 2) no valvular disease, and 3) normal ventricular volumes. Studies were performed on a GE Signa HDx 1.5T scanner, and PC flows measured with the resident FastCine PC pulse sequence (GE Healthcare, Milwaukee, WI). Breathe-though PC images were acquired perpendicular to the ascending aorta and main pulmonary artery. The flow sequences were repeated on a stationary fluid phantom to establish a baseline of zero velocity. The PC images were analyzed without and with phantom correction using GE ReportCard, and with background subtraction from stationary anterolateral chest wall tissue. The pulmonary-to-systemic blood flow ratio (Qp/Qs) was calculated for each method, as well as by volumetric analysis of SSFP short axis images. The methods were compared to each other using paired student t tests. Correlation coefficients were calculated for each method. No shunt was defined as Qp/Qs = 1.00 +/- 0.15. Results: There were 22 pts (median age 15.7 yrs, range 2 to 42 yrs) identified who met the study inclusion criteria. The average Qp/Qs (mean +/- SD) for No Correction was 1.27 +/- 0.34; Phantom Correction 1.03 +/- 0.15 (*p<0.05 versus No Correction); Stationary Tissue Correction 1.13 +/- 0.39; and Volumetric Analysis 0.97 +/- 0.09. Of the 22 pts with PC imaging, the correct diagnosis of no shunt was made on 12 pts without correction, 20 using phantom correction, and 11 using stationary tissue correction. By volumetric analysis, the diagnosis of no shunt was correctly made in 19 of 20 pts. Conclusions: Background subtraction using stationary tissue does not appear to be as accurate as phantom correction for PC flow assessment in clinical CMR studies. This finding should be assessed in laboratories using other CMR platforms

    Baseline correction of phase-contrast images in congenital cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One potential source of error in phase contrast (PC) congenital CMR flow measurements is caused by phase offsets due to local non-compensated eddy currents. Phantom correction of these phase offset errors has been shown to result in more accurate measurements of blood flow in adults with structurally normal hearts. We report the effect of phantom correction on PC flow measurements at a clinical congenital CMR program.</p> <p>Results</p> <p>Flow was measured in the ascending aorta, main pulmonary artery, and right and left pulmonary arteries as clinically indicated, and additional values such as Qp/Qs were derived from these measurements. Phantom correction in our study population of 149 patients resulted in clinically significant changes in 13% to 48% of these phase-contrast measurements in patients with known or suspected heart disease. Overall, 640 measurements or calculated values were analyzed, and clinically significant changes were found in 31%. Larger vessels were associated with greater phase offset errors, with 22% of the changes in PC flow measurements attributed to the size of the vessel measured. In patients with structurally normal hearts, the pulmonary-to-systemic flow ratio after phantom correction was closer to 1.0 than before phantom correction. There was no significant difference in the effect of phantom correction for patients with tetralogy of Fallot as compared to the group as a whole.</p> <p>Conclusions</p> <p>Phantom correction often resulted in clinically significant changes in PC blood flow measurements in patients with known or suspected congenital heart disease. In laboratories performing clinical CMR with suspected phase offset errors of significance, the routine use of phantom correction for PC flow measurements should be considered.</p

    Predictors of rapid aortic root dilation and referral for aortic surgery in Marfan syndrome

    Get PDF
    Few data exist regarding predictors of rapid aortic root dilation and referral for aortic surgery in Marfan syndrome (MFS). To identify independent predictors of the rate of aortic root (AoR) dilation and referral for aortic surgery, we investigated the data from the Pediatric Heart Network randomized trial of atenolol versus losartan in young patients with MFS. Data were analyzed from the echocardiograms at 0, 12, 24, and 36months read in the core laboratory of 608 trial subjects, aged 6months to 25 years, who met original Ghent criteria and had an AoR z-score (AoRz)>3. Repeated measures linear and logistic regressions were used to determine multivariable predictors of AoR dilation. Receiver operator characteristic curves were used to determine cut-points in AoR dilation predicting referral for aortic surgery. Multivariable analysis showed rapid AoR dilation as defined by change in AoRz/year>90th percentile was associated with older age, higher sinotubular junction z-score, and atenolol use (R-2=0.01) or by change in AoR diameter (AoRd)/year>90th percentile with higher sinotubular junction z-score and non-white race (R-2=0.02). Referral for aortic root surgery was associated with higher AoRd, higher ascending aorta z-score, and higher sinotubular junction diameter:ascending aorta diameter ratio (R-2=0.17). Change in AoRz of 0.72 SD units/year had 42% sensitivity and 92% specificity and change in AoRd of 0.34cm/year had 38% sensitivity and 95% specificity for predicting referral for aortic surgery. In this cohort of young patients with MFS, no new robust predictors of rapid AoR dilation or referral for aortic root surgery were identified. Further investigation may determine whether generalized proximal aortic dilation and effacement of the sinotubular junction will allow for better risk stratification. Rate of AoR dilation cut-points had high specificity, but low sensitivity for predicting referral for aortic surgery, limiting their clinical use. Clinical Trial Number ClinicalTrials.gov number, NCT00429364

    Risk factors for hospital morbidity and mortality after the Norwood procedure: A report from the Pediatric Heart Network Single Ventricle Reconstruction trial

    Get PDF
    ObjectivesWe sought to identify risk factors for mortality and morbidity during the Norwood hospitalization in newborn infants with hypoplastic left heart syndrome and other single right ventricle anomalies enrolled in the Single Ventricle Reconstruction trial.MethodsPotential predictors for outcome included patient- and procedure-related variables and center volume and surgeon volume. Outcome variables occurring during the Norwood procedure and before hospital discharge or stage II procedure included mortality, end-organ complications, length of ventilation, and hospital length of stay. Univariate and multivariable Cox regression analyses were performed with bootstrapping to estimate reliability for mortality.ResultsAnalysis included 549 subjects prospectively enrolled from 15 centers; 30-day and hospital mortality were 11.5% (63/549) and 16.0% (88/549), respectively. Independent risk factors for both 30-day and hospital mortality included lower birth weight, genetic abnormality, extracorporeal membrane oxygenation (ECMO) and open sternum on the day of the Norwood procedure. In addition, longer duration of deep hypothermic circulatory arrest was a risk factor for 30-day mortality. Shunt type at the end of the Norwood procedure was not a significant risk factor for 30-day or hospital mortality. Independent risk factors for postoperative renal failure (n = 46), sepsis (n = 93), increased length of ventilation, and hospital length of stay among survivors included genetic abnormality, lower center/surgeon volume, open sternum, and post-Norwood operations.ConclusionsInnate patient factors, ECMO, open sternum, and lower center/surgeon volume are important risk factors for postoperative mortality and/or morbidity during the Norwood hospitalization

    Metabolic Syndrome Mediates ROS-miR-193b-NFYA–Dependent Downregulation of Soluble Guanylate Cyclase and Contributes to Exercise-Induced Pulmonary Hypertension in Heart Failure With Preserved Ejection Fraction

    Get PDF
    BackgroundMany patients with heart failure with preserved ejection fraction have metabolic syndrome and develop exercise-induced pulmonary hypertension (EIPH). Increases in pulmonary vascular resistance in patients with heart failure with preserved ejection fraction portend a poor prognosis; this phenotype is referred to as combined precapillary and postcapillary pulmonary hypertension (CpcPH). Therapeutic trials for EIPH and CpcPH have been disappointing, suggesting the need for strategies that target upstream mechanisms of disease. This work reports novel rat EIPH models and mechanisms of pulmonary vascular dysfunction centered around the transcriptional repression of the soluble guanylate cyclase (sGC) enzyme in pulmonary artery (PA) smooth muscle cells.MethodsWe used obese ZSF-1 leptin-receptor knockout rats (heart failure with preserved ejection fraction model), obese ZSF-1 rats treated with SU5416 to stimulate resting pulmonary hypertension (obese+sugen, CpcPH model), and lean ZSF-1 rats (controls). Right and left ventricular hemodynamics were evaluated using implanted catheters during treadmill exercise. PA function was evaluated with magnetic resonance imaging and myography. Overexpression of nuclear factor Y α subunit (NFYA), a transcriptional enhancer of sGC β1 subunit (sGCβ1), was performed by PA delivery of adeno-associated virus 6. Treatment groups received the SGLT2 inhibitor empagliflozin in drinking water. PA smooth muscle cells from rats and humans were cultured with palmitic acid, glucose, and insulin to induce metabolic stress.ResultsObese rats showed normal resting right ventricular systolic pressures, which significantly increased during exercise, modeling EIPH. Obese+sugen rats showed anatomic PA remodeling and developed elevated right ventricular systolic pressure at rest, which was exacerbated with exercise, modeling CpcPH. Myography and magnetic resonance imaging during dobutamine challenge revealed PA functional impairment of both obese groups. PAs of obese rats produced reactive oxygen species and decreased sGCβ1 expression. Mechanistically, cultured PA smooth muscle cells from obese rats and humans with diabetes or treated with palmitic acid, glucose, and insulin showed increased mitochondrial reactive oxygen species, which enhanced miR-193b-dependent RNA degradation of nuclear factor Y α subunit (NFYA), resulting in decreased sGCβ1-cGMP signaling. Forced NYFA expression by adeno-associated virus 6 delivery increased sGCβ1 levels and improved exercise pulmonary hypertension in obese+sugen rats. Treatment of obese+sugen rats with empagliflozin improved metabolic syndrome, reduced mitochondrial reactive oxygen species and miR-193b levels, restored NFYA/sGC activity, and prevented EIPH.ConclusionsIn heart failure with preserved ejection fraction and CpcPH models, metabolic syndrome contributes to pulmonary vascular dysfunction and EIPH through enhanced reactive oxygen species and miR-193b expression, which downregulates NFYA-dependent sGCβ1 expression. Adeno-associated virus-mediated NFYA overexpression and SGLT2 inhibition restore NFYA-sGCβ1-cGMP signaling and ameliorate EIPH

    Survival Data and Predictors of Functional Outcome an Average of 15 Years after the Fontan Procedure: The Pediatric Heart Network Fontan Cohort

    Full text link
    ObjectiveMulticenter longitudinal outcome data for Fontan patients surviving into adulthood are lacking. The aim of this study was to better understand contemporary outcomes in Fontan survivors by collecting follow‐up data in a previously well‐characterized cohort.DesignBaseline data from the Fontan Cross‐Sectional Study (Fontan 1) were previously obtained in 546 Fontan survivors aged 11.9 ± 3.4 years. We assessed current transplant‐free survival status in all subjects 6.8 ± 0.4 years after the Fontan 1 study. Anatomic, clinical, and surgical data were collected along with socioeconomic status and access to health care.ResultsThirty subjects (5%) died or underwent transplantation since Fontan 1. Subjects with both an elevated (>21 pg/mL) brain natriuretic peptide and a low Child Health Questionnaire physical summary score (<44) measured at Fontan 1 were significantly more likely to die or undergo transplant than the remainder, with a hazard ratio of 6.2 (2.9–13.5). Among 516 Fontan survivors, 427 (83%) enrolled in this follow‐up study (Fontan 2) at 18.4 ± 3.4 years of age. Although mean scores on functional health status questionnaires were lower than the general population, individual scores were within the normal range in 78% and 88% of subjects for the Child Health Questionnaire physical and psychosocial summary score, and 97% and 91% for the SF‐36 physical and mental aggregate score, respectively. Since Fontan surgery, 119 (28%) had additional cardiac surgery; 55% of these (n = 66) in the interim between Fontan 1 and Fontan 2. A catheter intervention occurred in 242 (57%); 32% of these (n = 78) after Fontan 1. Arrhythmia requiring treatment developed in 118 (28%) after Fontan surgery; 58% of these (n = 68) since Fontan 1.ConclusionsWe found 95% interim transplant‐free survival for Fontan survivors over an average of 7 years of follow‐up. Continued longitudinal investigation into adulthood is necessary to better understand the determinants of long‐term outcomes and to improve functional health status.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110738/1/chd12193.pd

    Design and implementation of multicenter pediatric and congenital studies with cardiovascular magnetic resonance:Big data in smaller bodies

    Get PDF
    Cardiovascular magnetic resonance (CMR) has become the reference standard for quantitative and qualitative assessment of ventricular function, blood flow, and myocardial tissue characterization. There is a preponderance of large CMR studies and registries in adults; However, similarly powered studies are lacking for the pediatric and congenital heart disease (PCHD) population. To date, most CMR studies in children are limited to small single or multicenter studies, thereby limiting the conclusions that can be drawn. Within the PCHD CMR community, a collaborative effort has been successfully employed to recognize knowledge gaps with the aim to embolden the development and initiation of high-quality, large-scale multicenter research. In this publication, we highlight the underlying challenges and provide a practical guide toward the development of larger, multicenter initiatives focusing on PCHD populations, which can serve as a model for future multicenter efforts.</p

    Design and implementation of multicenter pediatric and congenital studies with cardiovascular magnetic resonance:Big data in smaller bodies

    Get PDF
    Cardiovascular magnetic resonance (CMR) has become the reference standard for quantitative and qualitative assessment of ventricular function, blood flow, and myocardial tissue characterization. There is a preponderance of large CMR studies and registries in adults; However, similarly powered studies are lacking for the pediatric and congenital heart disease (PCHD) population. To date, most CMR studies in children are limited to small single or multicenter studies, thereby limiting the conclusions that can be drawn. Within the PCHD CMR community, a collaborative effort has been successfully employed to recognize knowledge gaps with the aim to embolden the development and initiation of high-quality, large-scale multicenter research. In this publication, we highlight the underlying challenges and provide a practical guide toward the development of larger, multicenter initiatives focusing on PCHD populations, which can serve as a model for future multicenter efforts.</p
    corecore