1,922 research outputs found

    From Cellular Characteristics to Disease Diagnosis: Uncovering Phenotypes with Supercells

    Get PDF
    Cell heterogeneity and the inherent complexity due to the interplay of multiple molecular processes within the cell pose difficult challenges for current single-cell biology. We introduce an approach that identifies a disease phenotype from multiparameter single-cell measurements, which is based on the concept of ‘‘supercell statistics’’, a single-cell-based averaging procedure followed by a machine learning classification scheme. We are able to assess the optimal tradeoff between the number of single cells averaged and the number of measurements needed to capture phenotypic differences between healthy and diseased patients, as well as between different diseases that are difficult to diagnose otherwise. We apply our approach to two kinds of single-cell datasets, addressing the diagnosis of a premature aging disorder using images of cell nuclei, as well as the phenotypes of two non-infectious uveitides (the ocular manifestations of Behcžet’s disease and sarcoidosis) based on multicolor flow cytometry. In the former case, one nuclear shape measurement taken over a group of 30 cells is sufficient to classify samples as healthy or diseased, in agreement with usual laboratory practice. In the latter, our method is able to identify a minimal set of 5 markers that accurately predict Behcžet’s disease and sarcoidosis. This is the first time that a quantitative phenotypic distinction between these two diseases has been achieved. To obtain this clear phenotypic signature, about one hundred CD8+ T cells need to be measured. Although the molecular markers identified have been reported to be important players in autoimmune disorders, this is the first report pointing out that CD8+ T cells can be used to distinguish two systemic inflammatory diseases. Beyond these specific cases, the approach proposed here is applicable to datasets generated by other kinds of state-of-the-art and forthcoming single-cell technologies, such as multidimensional mass cytometry, single-cell gene expression, and single-cell full genome sequencing techniques.Fil: Candia, Julian Marcelo. University of Maryland; Estados Unidos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de FĂ­sica de LĂ­quidos y Sistemas BiolĂłgicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de FĂ­sica de LĂ­quidos y Sistemas BiolĂłgicos; ArgentinaFil: Maunu, Ryan. University of Maryland; Estados UnidosFil: Driscoll, Meghan. University of Maryland; Estados UnidosFil: Biancotto, AngĂ©lique. National Institutes of Health; Estados UnidosFil: Dagur, Pradeep. National Institutes of Health; Estados UnidosFil: McCoy Jr., J Philip. National Institutes of Health; Estados UnidosFil: Nida Sen, H.. National Institutes of Health; Estados UnidosFil: Wei, Lai. National Institutes of Health; Estados UnidosFil: Maritan, Amos. UniversitĂ  di Padova; ItaliaFil: Cao, Kan. University of Maryland; Estados UnidosFil: Nussenblatt, Robert B. National Institutes of Health; Estados UnidosFil: Banavar, Jayanth R.. University of Maryland; Estados UnidosFil: Losert, Wolfgang. University of Maryland; Estados Unido

    Comparison of early warning scores for sepsis early identification and prediction in the general ward setting

    Get PDF
    The objective of this study was to directly compare the ability of commonly used early warning scores (EWS) for early identification and prediction of sepsis in the general ward setting. For general ward patients at a large, academic medical center between early-2012 and mid-2018, common EWS and patient acuity scoring systems were calculated from electronic health records (EHR) data for patients that both met and did not meet Sepsis-3 criteria. For identification of sepsis at index time, National Early Warning Score 2 (NEWS 2) had the highest performance (area under the receiver operating characteristic curve: 0.803 [95% confidence interval [CI]: 0.795-0.811], area under the precision recall curves: 0.130 [95% CI: 0.121-0.140]) followed NEWS, Modified Early Warning Score, and quick Sequential Organ Failure Assessment (qSOFA). Using validated thresholds, NEWS 2 also had the highest recall (0.758 [95% CI: 0.736-0.778]) but qSOFA had the highest specificity (0.950 [95% CI: 0.948-0.952]), positive predictive value (0.184 [95% CI: 0.169-0.198]), and F1 score (0.236 [95% CI: 0.220-0.253]). While NEWS 2 outperformed all other compared EWS and patient acuity scores, due to the low prevalence of sepsis, all scoring systems were prone to false positives (low positive predictive value without drastic sacrifices in sensitivity), thus leaving room for more computationally advanced approaches

    Sepsis prediction for the general ward setting

    Get PDF
    OBJECTIVE: To develop and evaluate a sepsis prediction model for the general ward setting and extend the evaluation through a novel pseudo-prospective trial design. DESIGN: Retrospective analysis of data extracted from electronic health records (EHR). SETTING: Single, tertiary-care academic medical center in St. Louis, MO, USA. PATIENTS: Adult, non-surgical inpatients admitted between January 1, 2012 and June 1, 2019. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Of the 70,034 included patient encounters, 3.1% were septic based on the Sepsis-3 criteria. Features were generated from the EHR data and were used to develop a machine learning model to predict sepsis 6-h ahead of onset. The best performing model had an Area Under the Receiver Operating Characteristic curve (AUROC or c-statistic) of 0.862 ± 0.011 and Area Under the Precision-Recall Curve (AUPRC) of 0.294 ± 0.021 compared to that of Logistic Regression (0.857 ± 0.008 and 0.256 ± 0.024) and NEWS 2 (0.699 ± 0.012 and 0.092 ± 0.009). In the pseudo-prospective trial, 388 (69.7%) septic patients were alerted on with a specificity of 81.4%. Within 24 h of crossing the alert threshold, 20.9% had a sepsis-related event occur. CONCLUSIONS: A machine learning model capable of predicting sepsis in the general ward setting was developed using the EHR data. The pseudo-prospective trial provided a more realistic estimation of implemented performance and demonstrated a 29.1% Positive Predictive Value (PPV) for sepsis-related intervention or outcome within 48 h

    Metabotropic glutamate receptor 5 (mGluR5) regulates bladder nociception

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interstitial cystitis/painful bladder syndrome (IC/PBS), is a severely debilitating chronic condition that is frequently unresponsive to conventional pain medications. The etiology is unknown, however evidence suggests that nervous system sensitization contributes to enhanced pain in IC/PBS. In particular, central nervous system plasticity of glutamatergic signaling involving NMDA and metabotropic glutamate receptors (mGluRs) has been implicated in a variety of chronic pain conditions. Here, we test the hypothesis that mGluR5 mediates both non-inflammatory and inflammatory bladder pain or nociception in a mouse model by monitoring the visceromotor response (VMR) during graded bladder distention.</p> <p>Results</p> <p>Using a combination of genetic and pharmacologic approaches, we provide evidence indicating that mGluR5 is necessary for the full expression of VMR in response to bladder distention in the absence of inflammation. Furthermore, we observed that mice infected with a uropathogenic strain of <it>Escherichia coli </it>(UPEC) develop inflammatory hyperalgesia to bladder distention, and that the selective mGluR5 antagonist fenobam [N-(3-chlorophenyl)-N'-(4,5-dihydro-1-methyl-4-oxo-1H-imidazole-2-yl) urea], reduces the VMR to bladder distention in UPEC-infected mice.</p> <p>Conclusions</p> <p>Taken together, these data suggest that mGluR5 modulates both inflammatory and non-inflammatory bladder nociception, and highlight the therapeutic potential for mGluR5 antagonists in the alleviation of bladder pain.</p

    Towards a Realistic Neutron Star Binary Inspiral: Initial Data and Multiple Orbit Evolution in Full General Relativity

    Full text link
    This paper reports on our effort in modeling realistic astrophysical neutron star binaries in general relativity. We analyze under what conditions the conformally flat quasiequilibrium (CFQE) approach can generate ``astrophysically relevant'' initial data, by developing an analysis that determines the violation of the CFQE approximation in the evolution of the binary described by the full Einstein theory. We show that the CFQE assumptions significantly violate the Einstein field equations for corotating neutron stars at orbital separations nearly double that of the innermost stable circular orbit (ISCO) separation, thus calling into question the astrophysical relevance of the ISCO determined in the CFQE approach. With the need to start numerical simulations at large orbital separation in mind, we push for stable and long term integrations of the full Einstein equations for the binary neutron star system. We demonstrate the stability of our numerical treatment and analyze the stringent requirements on resolution and size of the computational domain for an accurate simulation of the system.Comment: 22 pages, 18 figures, accepted to Phys. Rev.

    Spot the difference: Comparing results of analyses from real patient data and synthetic derivatives

    Get PDF
    BACKGROUND: Synthetic data may provide a solution to researchers who wish to generate and share data in support of precision healthcare. Recent advances in data synthesis enable the creation and analysis of synthetic derivatives as if they were the original data; this process has significant advantages over data deidentification. OBJECTIVES: To assess a big-data platform with data-synthesizing capabilities (MDClone Ltd., Beer Sheva, Israel) for its ability to produce data that can be used for research purposes while obviating privacy and confidentiality concerns. METHODS: We explored three use cases and tested the robustness of synthetic data by comparing the results of analyses using synthetic derivatives to analyses using the original data using traditional statistics, machine learning approaches, and spatial representations of the data. We designed these use cases with the purpose of conducting analyses at the observation level (Use Case 1), patient cohorts (Use Case 2), and population-level data (Use Case 3). RESULTS: For each use case, the results of the analyses were sufficiently statistically similar ( DISCUSSION AND CONCLUSION: This article presents the results of each use case and outlines key considerations for the use of synthetic data, examining their role in clinical research for faster insights and improved data sharing in support of precision healthcare

    Fumarylacetoacetate Hydrolase Knock-out Rabbit Model for Hereditary Tyrosinemia Type 1.

    Get PDF
    Hereditary tyrosinemia type 1 (HT1) is a severe human autosomal recessive disorder caused by the deficiency of fumarylacetoacetate hydroxylase (FAH), an enzyme catalyzing the last step in the tyrosine degradation pathway. Lack of FAH causes accumulation of toxic metabolites (fumarylacetoacetate and succinylacetone) in blood and tissues, ultimately resulting in severe liver and kidney damage with onset that ranges from infancy to adolescence. This tissue damage is lethal but can be controlled by administration of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC), which inhibits tyrosine catabolism upstream of the generation of fumarylacetoacetate and succinylacetone. Notably, in animals lacking FAH, transient withdrawal of NTBC can be used to induce liver damage and a concomitant regenerative response that stimulates the growth of healthy hepatocytes. Among other things, this model has raised tremendous interest for the in vivo expansion of human primary hepatocytes inside these animals and for exploring experimental gene therapy and cell-based therapies. Here, we report the generation of FAH knock-out rabbits via pronuclear stage embryo microinjection of transcription activator-like effector nucleases. FAH-/- rabbits exhibit phenotypic features of HT1 including liver and kidney abnormalities but additionally develop frequent ocular manifestations likely caused by local accumulation of tyrosine upon NTBC administration. We also show that allogeneic transplantation of wild-type rabbit primary hepatocytes into FAH-/- rabbits enables highly efficient liver repopulation and prevents liver insufficiency and death. Because of significant advantages over rodents and their ease of breeding, maintenance, and manipulation compared with larger animals including pigs, FAH-/- rabbits are an attractive alternative for modeling the consequences of HT1.Wellcome Trus
    • 

    corecore