315 research outputs found

    Disparities in allele frequencies and population differentiation for 101 disease-associated single nucleotide polymorphisms between Puerto Ricans and Non-Hispanic Whites

    Get PDF
    BACKGROUND. Variations in gene allele frequencies can contribute to differences in the prevalence of some common complex diseases among populations. Natural selection modulates the balance in allele frequencies across populations. Population differentiation (FST) can evidence environmental selection pressures. Such genetic information is limited in Puerto Ricans, the second largest Hispanic ethnic group in the US, and a group with high prevalence of chronic disease. We determined allele frequencies and population differentiation for 101 single nucleotide polymorphisms (SNPs) in 30 genes involved in major metabolic and disease-relevant pathways in Puerto Ricans (n = 969, ages 45–75 years) and compared them to similarly aged non-Hispanic whites (NHW) (n = 597). RESULTS. Minor allele frequency (MAF) distributions for 45.5% of the SNPs assessed in Puerto Ricans were significantly different from those of NHW. Puerto Ricans carried risk alleles in higher frequency and protective alleles in lower frequency than NHW. Patterns of population differentiation showed that Puerto Ricans had SNPs with exceptional FST values in intronic, non-synonymous and promoter regions. NHW had exceptional FST values in intronic and promoter region SNPs only. CONCLUSION. These observations may serve to explain and broaden studies on the impact of gene polymorphisms on chronic diseases affecting Puerto Ricans.National Institutes of Health, National Institutes on Aging (P01AG02394, P01AG023394-SI); National Insitutes of Health (53-K06-5-10); US Department of Agriculture Research Service (58-1950-9-001, 58-1950-7-707); National Institutes of Health & Heart, Lung, and Blood Institute (U 01 HL72524, Genetic and Environmental Determinants of Triglycerides, HL54776

    Chemical constituents and hypoglycemic mechanisms of Dendrobium nobile in treatment of type 2 diabetic rats by UPLC-ESI-Q-Orbitrap, network pharmacology and in vivo experimental verification

    Get PDF
    Abstract: This study aimed to systematically explore the chemical constituents of D. nobile and its hypoglycemic effect by UPLC-ESI-Q-Orbitrap, network pharmacology and in vivo experiment. The chemical constituents of D. nobile were qualitatively analyzed, and the hypoglycemic compounds were quickly identified. Network pharmacological analysis and molecular docking technique were applied to assist in the elucidation of the hypoglycemic mechanisms of D. nobile. A type 2 diabetic mellitus (T2DM) rat model was established using the HFD and STZ method for in vivo experimental verification, and these T2DM rats were treated with D. nobile extract and D. nobile polysaccharide for two months by gavage. The results showed that a total of 39 chemical constituents of D. nobile, including alkaloids, bibenzyls, phenanthrenes and other types of compounds, were identified. D. nobile extract and D. nobile polysaccharide could significantly ameliorate the body weight, hyperglycemia, insulin resistance, dyslipidemia and morphological impairment of the liver and pancreas in the T2DM rats. α-Linolenic acid, dihydroconiferyl dihydro-p-coumarate, naringenin, trans-N-feruloyltyramine, gigantol, moscatilin, 4-O-methylpinosylvic acid, venlafaxine, nordendrobin and tristin were regarded as the key hypoglycemic compounds of D. nobile, along with the hypoglycemic effect on the PI3K-AKT signaling pathway, the insulin signaling pathway, the FOXO signaling pathway, the improvement of insulin resistance and the AGE-RAGE signaling pathway. The Western blotting experiment results confirmed that D. nobile activated the PI3K/AKT pathway and insulin signaling pathway, promoted glycogen synthesis via regulating the expression of glycogen synthase kinase 3 beta (GSK-3) and glucose transporter 4 (GLUT4), and inhibited liver gluconeogenesis by regulating the expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6pase) in the liver. The results suggested that the hypoglycemic mechanism of D. nobile might be associated with liver glycogen synthesis and gluconeogenesis, contributing to improving insulin resistance and abnormal glucose metabolism in the T2DM rats

    Tryptanthrin exerts anti-breast cancer effects both in vitro and in vivo through modulating the inflammatory tumor microenvironment

    Get PDF
    Tryptanthrin is an indole quinazoline alkaloid from the indigo-bearing plants, such as Isatis indigotica Fort. Typically, this natural compound shows a variety of pharmacological activities such as antitumor, antibacterial, anti-inflammatory and antioxidant effects. This study was conducted to assess the antitumor activity of tryptanthrin in breast cancer models both in vitro and in vivo, and to explore the important role of the inflammatory tumor microenvironment (TME) in the antitumor effects of tryptanthrin. Human breast adenocarcinoma MCF-7 cells were used to assess the antitumor effect of tryptanthrin in vitro. MTT assay and colony formation assay were carried out to monitor the antiproliferative effect of tryptanthrin (1.56~50.0 µmol L–1) on inhibiting the proliferation and colony formation of MCF-7 cells, respectively. The migration and invasion of MCF-7 cells were evaluated by wound healing assay and Transwell chamber assay, respectively. Moreover, the 4T1 murine breast cancer model was established to examine the pharmacological activity of tryptanthrin, and three groups with different doses of tryptanthrin (25, 50 and 100 mg kg–1) were set in study. Additionally, tumor volumes and organ coefficients were measured and calculated. After two weeks of tryptanthrin treatment, samples from serum, tumor tissue and different organs from tumor-bearing mice were collected, and the enzyme-linked immunosorbent assay (ELISA) was performed to assess the regulation of inflammatory molecules in mouse serum. Additionally, pathological examinations of tumor tissues and organs from mice were evaluated through hematoxylin and eosin (H&E) staining. The expression of inflammatory proteins in tumor tissues was measured by immunohistochemistry (IHC) and Western blotting. Tryptanthrin inhibited the proliferation, migration and invasion of MCF-7 cells, up-regulated the protein level of E-cadherin, and down-regulated those of MMP-2 and Snail, as suggested by the MCF-7 cell experiment. According to the results from in vivo experiment, tryptanthrin was effective in inhibiting tumor growth, and it showed favorable safety without inducing the fluctuations of body mass and organ coefficient (p > 0.05). In addition, tryptanthrin also suppressed the expression levels of NOS1, COX-2 and NF-κB in mouse tumor tissues, and regulated those of IL-2, IL-10 and TNF-α in the serum of tumor cells-transplanted mice. Tryptanthrin exerted its anti-breast cancer activities through modulating the inflammatory TME both in vitro and in vivo

    Oxygen Saturation and Suck-Swallow-Breathe Coordination of Term Infants during Breastfeeding and Feeding from a Teat Releasing Milk Only with Vacuum

    Get PDF
    Background. Vacuum is an important factor in milk removal from the breast, yet compression is the predominant component of milk removal from bottle teats. Since bottle-feeding infants have lower oxygen saturation, vacuum levels, and different suck-swallow-breathe (SSwB) coordination to breastfeeding infants, we hypothesised that when infants fed from a teat that required a vacuum threshold of −29 mmHg for milk removal, that oxygen saturation, heart rate, and suck-swallow-breathe (SSwB) patterns would be similar to those of breastfeeding. Study Design. Infants (=16) were monitored during one breastfeed and one feed from the experimental teat. Simultaneous recordings were made of oxygen saturation, heart rate, vacuum, tongue movement, respiration, and swallowing. Results. There were no differences in oxygen saturation and heart rate between the breast and the teat. Infants displayed fewer sucks and breaths per swallow during nutritive sucking (NS) compared to non-nutritive sucking (NNS). The number of sucks per breath was similar for NS and NNS although respiratory rates were slower during NS. These patterns did not differ between the breast and the teat. Conclusion. These results suggest that vacuum may be conducive to safe and coordinated milk removal by the infant during both breast and bottle-feeding

    Breastmilk cell and fat contents respond similarly to removal of breastmilk by the infant

    Get PDF
    Large inter- and intra-individual variations exist in breastmilk composition, yet factors associated with these variations in the short-term are not well understood. In this study, the effects of breastfeeding on breastmilk cellular and biochemical content were examined. Serial breastmilk samples (~5 mL) were collected from both breasts of breastfeeding women before and immediately after the first morning breastfeed, and then at 30-minute intervals for up to 3 hours post-feed on 2–4 mornings per participant. The infant fed from one breast only at each feed. Effects of pump versus hand expression for samples were evaluated. A consistent response pattern of breastmilk cell and fat contents to breastmilk removal was observed. Maximum fat and cell levels were obtained 30 minutes post-feed (P0.01), with up to 8-fold increase in fat and 12-fold increase in cell content compared to the pre-feed values, and then they gradually decreased. Breastmilk cell viability and protein concentration did not change with feeding (P>0.05), although large intra-individual variability was noted for protein. Expression mode for samples did not influence breastmilk composition (P>0.05). It is concluded that breastmilk fat content, and thus breast fullness, is closely associated with breastmilk cell content. This will now form the basis for standardization of sampling protocols in lactation studies and investigation of the mechanisms of milk synthesis and cell movement into breastmilk. Moreover, these findings generate new avenues for clinical interventions exploring growth and survival benefits conferred to preterm infants by providing the highest in fat and cells milk obtained at 30 min post-expression

    Disruption to social dyadic interactions but not emotional/anxiety-related behaviour in mice with heterozygous \u27knockout\u27 of the schizophrenia risk gene neuregulin-1.

    Get PDF
    Clinical genetic studies have implicated neuregulin-1 [NRG1] as a leading susceptibility gene for schizophrenia. NRG1 is known to play a significant role in the developing brain, which is consistent with the prevailing neurodevelopmental model of schizophrenia. Thus, the emotional and social phenotype of adult mice with heterozygous \u27knockout\u27 of transmembrane [TM]-domain NRG1 was examined further in both sexes. Emotional/anxiety-related behaviour was assessed using the elevated plus-maze and the light-dark test. Social behaviour was examined in terms of dyadic interactions between NRG1 mutants and an unfamiliar C57BL6 conspecific in a novel environment. There was no effect of NRG1 genotype on performance in either test of emotionality/anxiety. However, previous reports of hyperactivity in NRG1 mutants were confirmed in both paradigms. In the test of social interaction, aggressive following was increased in NRG1 mutants of both sexes, together with an increase in walkovers in female mutants. These findings elaborate the specificity of the NRG1 phenotype for the social rather than the emotional/anxiety-related domain. They indicate that NRG1 is involved in the regulation of reciprocal social interaction behaviour and thus suggest a putative role for NRG1 in a schizophrenia-related endophenotype

    Epigenome-wide association study of triglyceride postprandial responses to a high-fat dietary challenge

    Get PDF
    Postprandial lipemia (PPL), the increased plasma TG concentration after consuming a high-fat meal, is an independent risk factor for CVD. Individual responses to a meal high in fat vary greatly, depending on genetic and lifestyle factors. However, only a few loci have been associated with TG-PPL response. Heritable epigenomic changes may be significant contributors to the unexplained inter-individual PPL variability. We conducted an epigenome-wide association study on 979 subjects with DNA methylation measured from CD4(+) T cells, who were challenged with a high-fat meal as a part of the Genetics of Lipid Lowering Drugs and Diet Network study. Eight methylation sites encompassing five genes, LPP, CPT1A, APOA5, SREBF1, and ABCG1, were significantly associated with PPL response at an epigenome-wide level (P < 1.1 × 10(−7)), but no methylation site reached epigenome-wide significance after adjusting for baseline TG levels. Higher methylation at LPP, APOA5, SREBF1, and ABCG1, and lower methylation at CPT1A methylation were correlated with an increased TG-PPL response. These PPL-associated methylation sites, also correlated with fasting TG, account for a substantially greater amount of phenotypic variance (14.9%) in PPL and fasting TG (16.3%) when compared with the genetic contribution of loci identified by our previous genome-wide association study (4.5%). In summary, the epigenome is a large contributor to the variation in PPL, and this has the potential to be used to modulate PPL and reduce CVD

    Structure–activity relationship study of bone morphogenetic protein (BMP) signaling inhibitors

    Get PDF
    A structure–activity relationship study of dorsomorphin, a previously identified inhibitor of SMAD 1/5/8 phosphorylation by bone morphogenetic protein (BMP) type 1 receptors ALK2, 3, and 6, revealed that increased inhibitory activity could be accomplished by replacing the pendent 4-pyridine ring with 4-quinoline. The activity contributions of various nitrogen atoms in the core pyrazolo[1,5-a]pyrimidine ring were also examined by preparing and evaluating pyrrolo[1,2-a]pyrimidine and pyrazolo[1,5-a]pyridine derivatives. In addition, increased mouse liver microsome stability was achieved by replacing the ether substituent on the pendent phenyl ring with piperazine. Finally, an optimized compound 13 (LDN-193189 or DM-3189) demonstrated moderate pharmacokinetic characteristics (e.g., plasma t1/2 = 1.6 h) following intraperitoneal administration in mice. These studies provide useful molecular probes for examining the in vivo pharmacology of BMP signaling inhibition

    Genome-wide contribution of genotype by environment interaction to variation of diabetes-related traits

    Get PDF
    While genome-wide association studies (GWAS) and candidate gene approaches have identified many genetic variants that contribute to disease risk as main effects, the impact of genotype by environment (GxE) interactions remains rather under-surveyed. To explore the importance of GxE interactions for diabetes-related traits, a tool for Genome-wide Complex Trait Analysis (GCTA) was used to examine GxE variance contribution of 15 macronutrients and lifestyle to the total phenotypic variance of diabetes-related traits at the genome-wide level in a European American population. GCTA identified two key environmental factors making significant contributions to the GxE variance for diabetes-related traits: carbohydrate for fasting insulin (25.1% of total variance, P-nominal = 0.032) and homeostasis model assessment of insulin resistance (HOMA-IR) (24.2% of total variance, P-nominal = 0.035), n-6 polyunsaturated fatty acid (PUFA) for HOMA-β-cell-function (39.0% of total variance, P-nominal = 0.005). To demonstrate and support the results from GCTA, a GxE GWAS was conducted with each of the significant dietary factors and a control E factor (dietary protein), which contributed a non-significant GxE variance. We observed that GxE GWAS for the environmental factor contributing a significant GxE variance yielded more significant SNPs than the control factor. For each trait, we selected all significant SNPs produced from GxE GWAS, and conducted anew the GCTA to estimate the variance they contributed. We noted the variance contributed by these SNPs is higher than that of the control. In conclusion, we utilized a novel method that demonstrates the importance of genome-wide GxE interactions in explaining the variance of diabetes-related traits
    corecore