1,663 research outputs found

    Quantum tunneling time

    Full text link
    A simple model of a quantum clock is applied to the old and controversial problem of how long a particle takes to tunnel through a quantum barrier. The model I employ has the advantage of yielding sensible results for energy eigenstates, and does not require the use of time-dependant wave packets. Although the treatment does not forbid superluminal tunneling velocities, there is no implication of faster-than-light signaling because only the transit duration is measurable, not the absolute time of transit. A comparison is given with the weak-measurement post-selection calculations of Steinberg.Comment: 10 pages, no figures, research pape

    A review of parallel finite element methods on the DAP

    Get PDF
    AbstractThis paper reviews the research work that has been done to implement the finite element method for solving partial differential equations on the ICL distributed array processor (DAP). A brief outline of the principle features of the method is given, followed by details of the novel techniques required for implementation on the highly parallel architecture. Various methods of solution of the finite element equations are discussed; both direct and iterative techniques are included. The current state-of-the-art favours the use of the preconditioned conjugate gradient method. Some suggestions for future research work on parallel finite element methods are made

    Radiofrequency ablation versus hepatic resection for hepatocellular carcinoma within the Milan criteria – A comparative study

    Get PDF
    AbstractBackgroundTo compare the results of radiofrequency ablation (RFA) with hepatic resection in the treatment of hepatocellular carcinoma (HCC) within the Milan criteria.MethodsA nonrandomized comparative study was performed with 111 consecutive patients who underwent laparoscopic RFA (n = 31) or curative hepatic resection (n = 80) for HCC within Milan criteria.ResultsProcedure related complications were less often and severe after RFA than resection (3.2% vs. 25%). There was no significant difference in hospital mortality (0% vs. 3.8%). Hospital stay was significantly shorter in the RFA group than in the resection group (mean, 3.8 vs. 6.8 days). The 1-, 3-, and 5-year disease-free survival rates for the RFA group and the resection group were 76%, 40%, 40% and 76%, 60%, 60%, respectively. Disease-free survival was significantly lower in the RFA group than in the resection group. The corresponding 1-, 3-, and 5-year overall survival rates for the RFA group and the resection group were 100%, 92%, 84%, and 92%, 75%, 71%, respectively. The overall survival for RFA and resection were not significantly different.ConclusionsOur result showed comparable overall survival between RFA and surgery, although RFA was associated with a significantly higher tumor recurrence rate. RFA had the advantages over surgical resection in being less invasive and having lower morbidity

    Experimental investigation on the influencing factors of a transcritical CO2 heat pump

    Get PDF
    The concept of “the optimal heat rejection pressure” has attracted wide attention in refrigeration community. Unlike the conventional refrigerants, the heat rejection pressure and temperature of the gas-cooler in the transcritical CO2 cycle are usually decoupled in the transcritical cycle. Besides, there exists an optimal heat rejection pressure under which the maximum cycle efficiency can be achieved. Therefore, the interaction effect between heat rejection pressure and system performance has been studied by many researchers. The heat rejection pressure of the gas-cooler has great impact on the COP of the transcritical CO2 system, but the investigation on the influence factors of the heat rejection pressure is quite rare in open literature. In this paper, the effects of the water inlet temperatures and the water flow rates on the heat rejection pressure of a water-to-water transcritical CO2 refrigeration heat pump with single-stage expansion system have been investigated. Furthermore, the operation parameters and the performance of the system are also evaluated

    Recovery from Anorexia Nervosa in contemporary Taiwan: A multiple-case qualitative investigation from a cultural-contextual perspective

    Get PDF
    Grounded in a cultural and contextual perspective, the current study examined the lived experiences and the recovery pathways of three Taiwanese women diagnosed with various subtypes of anorexia nervosa, at varying stages of their recovery. Specifically, using a multiple-case qualitative method, this study explored the complex, dynamic interactions of sociocultural factors and forces (i.e., cultural, familial, and societal influences) that impinge upon the three Taiwanese female participants in relation to living with anorexia nervosa in contemporary Taiwan. Data were collected based on in-depth, semi-structured interviews with the participants and relevant written materials and journal entries provided by these participants. The data were first analyzed within each case and then again across all cases. Accordingly, we present the results of the study by illustrating each participant’s story and narrative of struggling with and recovering from anorexia. We then describe three main culturally-related themes that emerged from the cross-case analysis, which pertain specifically to the recovery process of the participants under the East-West ‘biculturalism’ in Taiwan: 1) anorexia as a function of the conflictual bicultural self; 2) recovery as a pathway towards an integrated bicultural self; and 3) the paradoxical roles of Chinese cultural heritage in anorexia and recovery. Findings of the study highlight the role of local cultural factors/forces, including Chinese familism, Confucianism, filial piety, face-saving, gender role prescriptions, biculturalism, Westernization, and self-relation-coordination, in affecting and shaping Taiwanese women’s struggling with anorexia. Implications and recommendations for future research and clinical interventions are discussed

    Revisiting the Bs()B^{(*)}_s-Meson Production at the Hadronic Colliders

    Full text link
    The production of heavy-flavored hadron at the hadronic colliders provides a challenging opportunity to test the validity of pQCD predictions. There are two mechanisms for the Bs()B^{(*)}_s hadroproduction, i.e. the gluon-gluon fusion mechanism via the subprocess g+gBs()+b+sˉg+g\rightarrow B^{(*)}_s+b+\bar{s} and the extrinsic heavy quark mechanism via the subprocesses g+bˉBs()+sˉg+\bar{b}\to B^{(*)}_s +\bar{s} and g+sBs()+bg+s\to B^{(*)}_s +b, both of which shall have sizable contributions in proper kinematic region. Different from the fixed-flavor-number scheme (FFNS) previously adopted in the literature, we study the Bs()B^{(*)}_s hadroproduction under the general-mass variable-flavor-number scheme (GM-VFNS), in which we can consistently deal with the double counting problem from the above two mechanisms. Properties for the Bs()B^{(*)}_s hadroproduction are discussed. To be useful reference, a comparative study of FFNS and GM-VFNS is presented. Both of which can provide reasonable estimations for the Bs()B^{(*)}_s hadroproduction. At the Tevatron, the difference between these two schemes is small, however such difference is obvious at the LHC. The forthcoming more precise data on LHC shall provide a good chance to check which scheme is more appropriate to deal with the Bs()B^{(*)}_s-meson production and to further study the heavy quark components in hadrons.Comment: 18 pages, 8 figures, 4 tables. To match the published version. To be published in Eur.Phys.J.

    Potential benefits of an adaptive forward collision warning system

    Get PDF
    Forward collision warning (FCW) systems can reduce rear-end vehicle collisions. However, if the presentation of warnings is perceived as mistimed, trust in the system is diminished and drivers become less likely to respond appropriately. In this driving simulator investigation, 45 drivers experienced two FCW systems: a non-adaptive and an adaptive FCW that adjusted the timing of its alarms according to each individual driver’s reaction time. Whilst all drivers benefited in terms of improved safety from both FCW systems, non-aggressive drivers (low sensation seeking, long followers) did not display a preference to the adaptive FCW over its non-adaptive equivalent. Furthermore, there was little evidence to suggest that the non-aggressive drivers’ performance differed with either system. Benefits of the adaptive system were demonstrated for aggressive drivers (high sensation seeking, short followers). Even though both systems reduced their likelihood of a crash to a similar extent, the aggressive drivers rated each FCW more poorly than their non-aggressive contemporaries. However, this group, with their greater risk of involvement in rear-end collisions, reported a preference for the adaptive system as they found it less irritating and stress-inducing. Achieving greater acceptance and hence likely use of a real system is fundamental to good quality FCW design

    Resolution in Linguistic Propositional Logic based on Linear Symmetrical Hedge Algebra

    Full text link
    The paper introduces a propositional linguistic logic that serves as the basis for automated uncertain reasoning with linguistic information. First, we build a linguistic logic system with truth value domain based on a linear symmetrical hedge algebra. Then, we consider G\"{o}del's t-norm and t-conorm to define the logical connectives for our logic. Next, we present a resolution inference rule, in which two clauses having contradictory linguistic truth values can be resolved. We also give the concept of reliability in order to capture the approximative nature of the resolution inference rule. Finally, we propose a resolution procedure with the maximal reliability.Comment: KSE 2013 conferenc

    Spinning Braid Group Representation and the Fractional Quantum Hall Effect

    Get PDF
    The path integral approach to representing braid group is generalized for particles with spin. Introducing the notion of {\em charged} winding number in the super-plane, we represent the braid group generators as homotopically constrained Feynman kernels. In this framework, super Knizhnik-Zamolodchikov operators appear naturally in the Hamiltonian, suggesting the possibility of {\em spinning nonabelian} anyons. We then apply our formulation to the study of fractional quantum Hall effect (FQHE). A systematic discussion of the ground states and their quasi-hole excitations is given. We obtain Laughlin, Halperin and Moore-Read states as {\em exact} ground state solutions to the respective Hamiltonians associated to the braid group representations. The energy gap of the quasi-excitation is also obtainable from this approach.Comment: (36 pages) e-mail [email protected]
    corecore