
A review of parallel finite
element methods on the
DAP
C. H. Lai and H. M. Liddell

Department of Computer Science and Statistics, Queen Mary College, University of London,
London El 4NS, UK

(Received March 1986: revised December 1986)

This paper reviews the research work that has been done to implement
the finite element method for solving partial differential equations on
the ICL distributed array processor (DAP). A brief outline of the prin-
ciple features of the method is given, followed by details of the novel
techniques required for implementation on the highly parallel architec-
ture. Various methods of solution of the finite element equations are
discussed; both direct and iterative techniques are included. The
current state-of-the-art favours the use of the preconditioned conju-
gate gradient method. Some suggestions for future research work on
parallel finite element methods are made.

Keywords : DAP (distributed array processor), SIMD (single-
instruction multiple-data), FE (finite element), MIMD (multiple-
instruction multiple-data), CG (conjugate gradient)

Introduction

A number of research workers have considered the
application of finite element (FE) methods on the DAP.
Wait, Delves, and their groups at the University of
Liverpool have carried out research into the implemen-
tion of both FE techniques and the global element
method (GEM) on the DAP.lp3 Most of the work was
directed towards the solution of two-dimensional (2D)
elliptic problems, but three-dimensional (3D) problems
have also been studied. Dixon4*’ and his group at Hat-
field Polytechnic investigated the solution of partial dif-
ferential equations (p.d.e.s) arising from the
two-dimensional Poisson equation following a Galerkin
FE approach, which employed a parallel version of the
conjugate gradient (CG) algorithm. A novel feature of
their work is that the assembly of the global stiffness
matrix is not required. Livesley, Modi, and Smithers6
have also analysed storage schemes and solution
methods for parallel FE computations. At Queen Mary
College, Davies, Lai, Liddell, and Parkinson have been
basing their work on the SERC/NAG FE library.7*8
The latter was used as a model for the development of
DAP FE software with the initial aim of producing suf-
ficient routines to solve simple 2D and 3D p.d.e.s on
meshes of modest size by simple triangular, quadrilat-
eral, or brick elements. The SERC routines required to

330 Appl. Math. Modelling, 1987, Vol. 11, October

solve such problems are general enough to solve many
other types of problems and the DAP approach has
been to provide equivalent routines but designed spe-
cifically for the highly parallel DAP hardware, which
maintain this generality. As a result of this work, DAP
routines have been produced that provide a framework
for solving FE problems on the DAP, which have been
made available to the DAP user community. This
approach was adopted in order to maximise progress in
the short term, but will probably not yield an optimal
DAP FE package, since the structure of existing pack-
ages, written for serial machines, is not optimal for
DAP-oriented algorithms. The overall structure
required for an efficient DAP mapping is one of the
points under consideration. However, there are other
advantages in basing the work on the FE library.
Unlike many commercial FE packages, the library has
been designed to be highly flexible, particularly for use
in the development field. The documentation style is
based on that used in the NAG library, as is the DAP
subroutine library, so it is easy to incorporate appropri-
ate routines from the latter.

To date, most FE research on the DAP has concen-
trated on the processing stage of the calculations. The
mainframe DAP is a 64 x 64 array of simple l-bit pro-
cessors (Figure Z), each connected vertically to its own

0307-904x/87/050330-11/$03.00
0 1987 Butterworth Publishers

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82289048?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Parallel finite element methods on the DA P: C. H. Lai and H. M. Liddell

(64

PE MATRIX (64 X 64)

\ 64

DAP
x 64

PROCESSING
ELEMENT

16K LOCAL STORE
-OF PROCESSING
ELEMENT

16K BITS

Figure 7 The mainframe DAP

16K bits of store and horizontally to its four nearest
neighbours on a rectangular grid. There are also row
and column highways, which permit fast access to ele-
ments in the same row or column. The DAP is a SIMD
(single-instruction multiple-data) machine-the master
control unit issues the same set of instructions to all
processors-but at any instant some processors may be
switched off, thus providing a degree of local autonomy.
The DAP array can also be treated as a one-
dimensional “long vector ” of 4096 processors. The
DAP is used via a host processor, the ICL 2980, which
has limited interactive capabilities and is not suited to
image processing and graphics applications. A more
interactive environment is provided by the 1024 pro-
cessor mini-DAP attached to a scientific workstation,
which has good graphics and windowing facilities; the
latter allows the viewing of a number of concurrent pro-
cesses. This type of system encourages the development
of parallel mesh generation and graphics algorithms to
be incorporated into the pre- and postprocessing sec-
tions of the code. Some of the results produced in this
paper were obtained on the mainframe DAP, others on
the mini-DAP. The individual processor speed of the
latter is slightly greater than the former, but the larger
array and store size of the mainframe DAP is advanta-
geous for large FE problems. However, future mini-
DAPs are expected to have much more store than is
available on the prototypes currently used.

There is also intensive research at NASA Langley on
the application of the FE machine to the FE method.
This machine is a MIMD (multiple-instruction
multiple-data) computer. More details of the hardware
can be found in Ref. 9. In this review the main emphasis
is on current developments in the use of a SIMD com-
puter (the DAP) for the FE method. However, some
parallel algorithms that have been developed by the
group at NASA Langley for use on their MIMD FE
machine are included, since they appear suitable also
for SIMD architectures.

The finite element method

The FE method is a numerical technique for obtaining
approximate solutions of boundary value problems.
These boundary value problems usually arise from the
modelling of physical behaviour and can be divided into
three groups :

1. Equilibrium problems involving stationary pheno-
mena (i.e., phenomena that are independent of time and
that can be reduced to equations of elliptic type (e.g.,
Laplace’s equation))
2. Eigenvalue problems, which involve eigenvalue prob-
lems for elliptic operators (e.g., the Helmholtz equation)
3. Evolution problems, whose solutions depend on time
and are characterised by parabolic or hyperbolic equa-
tions (e.g., the diffusion equation, the wave equation)

In the FE technique the domain of interest is divided
into elements of finite dimension. These elements are
referred to as ‘finite elements’. Each element consists of
some nodal points or nodes on its boundary. The
unknown field variables @ of an element can be approx-
imated in terms of the nodal variables 4 and the shape
functions N of the element, namely

CD = NT4 (1)

This equation is the FE discretisation. For a standard
element of square shape as given in Figure 2 with four
nodal points and nodal unknowns, 41, I$~, 43, cj4, the
bilinear shape functions are given by

Ni = t(l + 55&l + V/i) i = 1, 2, 3, 4 (2)

where ti and vi are local coordinates of node i of the
standard element in Figure 2 and t, q are local coordi-
nates of an arbitrary point inside the standard element.
The subscripts of the local unknowns are called the
local freedom numbers. The number of unknowns per
node is often referred to as ‘degrees of freedom’. Here,
each node has one degree of freedom, and each square
element has four degrees of freedom.

Consider a rectangular computational domain
divided into nine square elements, as shown in Figure 3.
At this stage it is necessary to define what is meant by
the nodal geometry, steering vector, element topology,
and element geometry. The nodal geometry describes
the coordinates of each node; e.g., node 6 in Figure 3
has nodal geometry (x6, ys) or (3, 3) if the domain is a
unit square; in general, for any node i the nodal
geometry is (xi, y,). The steering vector is the global
nodal numbering of an element in the direction of the
local nodal numbering of the standard element; e.g., the
steering vectors for elements 3 and 5 of Figure 3 are [7,

(-1, 1) (1, 1)

1

1 5

4

C-1, -1) (1, -1)
Figure 2 Local coordinates and node numbering of a standard
square element

Appl. Math. Modelling, 1987, Vol. 11, October 331

Parallel finite element methods on the DAP: C. H. Lai and H. M. Liddell

3, 4, S] and [10, 6, 7, 1 l] ; for any general quadrilateral
as shown in Figure 4, the steering vector is [i, j, k, 1-J.
The element topology specifies the topological shape
and type of an element using nnod, n,, and the steering
vector of a given element; e.g., element topology of
element 5 is [4, 1, 10, 6, 7, 111, where nnod = 4 is used to
denote the number of nodes per element and n, = 1 is
used to denote a square element. Different values of n,
should be used for different types of elements; for a
general element as shown in Figure 4, the element

topology is Cnnod, n,, i, j, k, 11. The element geometry
specifies the geometrical location of an element; e.g., the
element geometry of element 5 of Figure 3, assuming a
unit square domain, is

Consider the 2D potential flow equation

(3)

where K, and K, are permeabilities in the x- and y-
directions, and Q is the local source or sink.

Several mathematical formulations”,” can use the
FE discretisation: e.g., Galerkin’s method, the

Figure 3 A computational domain with nine square elements

Y

.i i

k

t------x
Figure 4 Global node numbering of a quadrilateral element

Rayleigh-Ritz method (applicable only to self-adjoint
systems), and the least-squares method.

Galerkin’s method involves the orthogonalisation
process of the residual and an arbitrary change &II of
the function @. For example, the potential flow equa-
tion has residual

l =K,$+KyE+Q
a3 (4)

and, according to the definition, the orthogonalisation
is thus

(E, 6@) = 0 (5)

i.e..

K,$+K,$+Q 6Q,dxdy=O
>

(6a)

Substituting the FE discretisation as given by equation
(1) into equation (6a) gives

+ KY c i ~ 4i + Q C Nj S~j dx dy (6b)
j

which leads to an element equation given by

+ C s4j QNj dx dy = 0 (6~)
j

d

The element stiffness matrix k is thus

k, =
a2N.

K,N,----!
ax2 + KY Nj

3

aY2

dx dy

(7a)

and the element source vector Qe’ is

Q;‘= -
ss

QiNidxdy (7b)

el

In the Rayleigh-Ritz method a functional F, called
the energy functional, is defined such that the minimum
is the solution of the given differential equation. For the
2D potential flow equation, we can define

Substituting the FE discretisation into the functional F
leads to

332 Appl. Math. Modelling, 1987, Vol. 11, October

Differentiating with respect to bi and setting to zero
give

+2K,$&%4j)-2QiA$]dxdy=0 (9b)

Differentiating equation (9b) with respect to tii leads to
the Hessian matrix V2Fne1 such that

V2F!? = V 2K
aN. aN' aN. aN.
L - + 2K, L -

x ax ax ay ay
dx dy (SC)

el

which must be positive definite to ensure an occurrence
of a minimum for F. The element stiffness matrix k is

k, = 2K, 2 2 + 2K, % T
>

dx dy (10a)

el

and the element source vector Qel is

Q;' =
ss

2Qi Ni dx dy

el

(IOb)

The least-squares method also involves a definition
for a functional F, which is given by the inner product
of the residual; i.e.,

F = (E, E) (11)

A similar minimisation process to the one previously
given can be carried out.

The element stiffness matrix usually involves integra-
tion such as

11

ss
fk Y) dx dy =

ss
fk yWU)I dt dr (12)

0 0

Here the Jacobian matrix J is

ax ay
J= z z

[1 ax ay
T&g

(13)

Usually equation (12) is numerically integrated, and
Gaussian quadrature lo is used, which reduces an inte-
gration to a summation, as shown below:

TT f(‘G Y) dx dY = i Wi I J(5i > Vi) I f(Xi 2 YJ (14)
JJ i=l

where wi are called the weight coefficients and n is the
number of quadrature points. Details of the abscissae
and weight coefficients can be found in Ref. 10.

Havilg obtained the element stiffness matrix k and
the element source vector Qel, we must construct the
global matrix and the global source vector. This process
essentially requires the proper positioning of each local
node of an element in the global system. Consider the
discretised physical domain with nine finite elements as
shown in Figure 3; the steering vector for element 3 is
[7, 3, 4, S]. The element stiffness matrix for element 3 is
(kij)J; therefore the stiffness contribution from element 3

to the global system is simply the assignment

(k,,), + K,, (k,,), -+KT3 (k& +K,4 (k,,), +K,s

(M3 + KM (k,,), +K33 (M, +K34 (k24h -'KM

(k&+K4, @32)3+& (k,,),+L h),+K,S

h),-,fC, (k,,),-+& (k&-+fh (LJ,+KxS

Hence the global system is

K4=b (15)

where K is the global stiffness matrix, which is usually a
symmetric positive definite matrix, 4 is the global
unknown vector, and b is the global source vector.

In this mathematical formulation the boundary con-
ditions are of Dirichlet type. For natural boundary con-
ditions the integration previously given should use
Green’s formula. For example, in Galerkin’s formula-
tion the integral given by equation (6a) should yield

60 dx dy

aaaaso,
K,~~+Ky--

ay ay
dx dy

+jq,d@dS+~jQ%I)dxdy

S

rather than equation (6b). Here q,, is the normal deriv-
ative along the boundary S. The line integral along the
boundary can be carried out by numerical integration
using the Gaussian quadrature formula.

The problem is now reduced to the solution of the set
of simultaneous equations

Ax = b (16)

where A is a symmetric positive definite matrix. The
fourth section describes various parallel solution
methods for a large sparse system of equations.

A typical FE program’ for the solution of a field
problem includes

1. Nodal geometry and element data that can be pro-
duced by a mesh generation routine or a large amount
of input data
2. Element stiffness matrix and source vector calcu-
lations
3. Global stiffness matrix and source vector assembly
4. Introduction of boundary conditions
5. Solution of FE equations

Parallel implementation of finite element on the
DAP

Element topology and geometry

Researchers have developed two methods for
mapping finite elements onto the DAP.

S. Davies’ and R. Wait 2*3 have used a ‘long-vector’
method, where elements are consecutively stored in a
long vector according to the element numbering order.
Figure 5(a) illustrates this element storage scheme on a
4 x 4 DAP for the computational domain in Figure 3.
With this type of storage the x-coordinates of the nodes
are kept in a long vector with declaration X(,), and
similarly for y-coordinates. The element topology is

Parallel finite element methods on the DAP: C. H. Lai and H. M. Liddell

Appl. Math. Modelling, 1987, Vol. 11, October 333

Parallel finite element methods on the DAP: C. H. Lai and H. M. Liddell

shaded region
masked Cl”

figure 5(a) Long-vector storage of finite elements. i = 1, , 16
refers to the global nodal numbering, and a circled number refers
to the element numbering (see Figure 3)

shaded region to
be masked out

1 5 9 13

2 6 10 14

3 1 11 15

4 8 12 16

Figure 5(6) Upper leftmost storage of finite elements. i= 1, 2,
. . . . 16 refers to the global nodal numbering, and a circled number
refers to the element numbering (see Figure 3)

kept in six long vectors with the matrix declaration
ELTOP(,, 6). It is because the elements are stored
according to the element numbering order that a
random allocation’ of these elements to the long vector
is possible. Such an element ordering usually arises
from irregular boundaries and grids.

Ducksbury of Hatfield Polytechnic has used an
‘upper leftmost’ element storage scheme on the DAP.
This storage method is also suggested by Livesley,
Modi, and Smithers’j of Cambridge University.
Figure 5(b) shows the upper leftmost storage on a 4 x 4
DAP for the example as given in Figure 3. With this
type of storage the x- and y-coordinates of the nodes
are kept in the processors at the corresponding nodes.

In order to generate the element geometry for the
long-oector storage (Figure 5(a)), we define a mapping
that selects the required node number for a particular
element and the corresponding coordinates. This
mapping can be done via the DAP library utility
routine MOlPERMUTEl. The following sketch illus-
trates the mapping of global coordinates of all the
nodes (see Figure 3) referred to the first node (upper
right node) of the standard element (see Figure 2). In
this example, since nodes 1, 2, 3, 4, 8, 12, and 16 are not
the upper right node of any element, they are not
involved in the mapping. A similar mapping must be
done for the other nodes (i.e., nodes 2, 3, and 4 of the
standard element) for both x- and y-coordinates.

Local node MO1 PERMUTE1 Global x-coordinates
1 mapping x(i), i= 1, 2, .., 16

x(16)

To generate the element geometry for the upper left-
most storage, we can use shift functions. For example,
coordinates for local node 1 are obtained as

GEOM(,,l, 1) = SHWP(X)

GEOM(,,l, 2) = SHWP(Y)

Coordinates for local node 2 are

GEOM(,,2, 1) = X GEOM(,,2, 2) = Y

and so on, where the declaration GEOM(,,4, 2) is used
to hold the element geometry of each element with four
nodal points and two spatial coordinates per point.

One of the advantages of the long-vector storage of
elements is that it can handle arbitrary element shapes.
An immediate disadvantage of upper leftmost storage is
that the local numbering system has to follow the one
shown in Figure 2 if the above shift functions are
adopted. Moreover, the long-vector storage, which
permits random allocation of elements to processors,

334 Appl. Math. Modelling, 1987, Vol. 11, October

Parallel finite element methods on the DAP: C. H. Lai and H. M. Liddell

can more easily incorporate an automatic mesh gener-
ation where there is normally a random numbering of
the generated elements.

Element stiffness matrix

Instead of calculating the element stiffness matrices
one by one as in a serial code, we can form them simul-
taneously; i.e., a serial algorithm can be used vertically.
For example, the local derivates, the Jacobian matrices,
and the global derivatives can be obtained vertically by
a serial code. However, the code has to be accompanied
by the appropriate mask for long-vector or upper left-
most element storage. To perform the numerical inte-
gration that produces the element stiffness matrix, we
can adopt a numerical integration scheme, such as the
one in equation (14).

In the element matrix calculation, irrespective of
whether long-vector or upper leftmost element storage
is used, the code is a simple extension of the serial code
so that parallel operations can be carried out.

Global matrix assembly

This section deals with an important part of the
parallel implementation of finite elements on the DAP.
Since the ordering of the unknowns in the global matrix
K (see equation (15)) is nodal, the solution must be
based on a processor allocation that is node based
rather than element based. Thus a FE computation on
the DAP has a reassignment and global assembly phase
that has no direct counterpart in a serial algorithm. If
adjacent elements are assembled on different processors,
it is necessary for data to be transmitted from one pro-
cessor to another in order to assemble the global
system. Again there are two types of assembly tech-
niques, depending on the method of FE storage.

The Hatfield group4 has developed a parallel CG
method such that the assembly of the global stiffness
matrix is not required. This method is described in the
next section in more detail. The Cambridge group6 has
suggested an assembly technique based on the upper
leftmost storage, which is used to obtain the global
stiffness matrix in band matrix form as follows.

Consider a 4 x 4 DAP and a physical domain
divided into nine elements with local numbering system
as given in Figure 3, with the normal definition for
element stiffness matrix (kij),e,, where the subscript n,,
represents the element number; if k(,,i, j) is the corre-
sponding declaration in a DAPFORTRAN program,
then some of the matrix coefficients are

[

(k& (k&4 (k,,), 0

kL2, 2) = (k,,), (k&S (k,,), 0

(k,,), (k&i (k,,), 0
0 0 00 1

where k(,,4, 4) is a matrix array declaration on a 4 x 4
DAP. To calculate K,,, in the global matrix, we need
the sum of (k,,),, (k33)4, (k,,), , (k,,), . Therefore the
diagonal of the global matrix can be written in DAP-
FORTRAN as

k(,,2, 2) + SHSW,,3, 3)) + SHJWW4, 4)))

+ SHSP(SHEP(k(,,4, 4)))

The first off-diagonal of the band matrix is
SHEP(k(,,l, 4)) + k(,,2, 3), the second is zero, the third is
SHSP(k(,,3, l)), the fourth is SHSP(k(,,3, 4)) + k(,,2, l),
and the fifth is k(,,2, 4).

This process may be illustrated by a diagrammatic
approach, as in Figure 6, which involves five different
stages for quadrilateral elements during the assembly
phase. The tail and head of each arrow in Figure 6 rep-
resent the subscripts i and j in the stiffness matrix kij,
where ij are local node numberings (Figure 2). For
example, in stage 4 the subscripts ij are 21 and 34;
hence k,, and k,, of an appropriate element are added
up. This type of global assembly has the immediate dis-
advantage that a specified format in the numbering of
nodes and elements has to be followed. For example,
the DAPFORTRAN code given previously for the
global matrix assembly is valid only for the numbering
system in Figure 2. Furthermore, it is very difficult to
generalise to complicated elements.

A different approach is to use long-vector storage,
which was done by Davies’ and Wait and Martindale.’
Figure 7 shows the element matrices on the DAP, where
each rectangular cube represents a long vector. Follow-
ing the global matrix assembly given in the second
section, it is very useful to have the steering vector on
hand, i.e., the global node numbering of each element in
the direction of the local node numbering of a standard
element. For Figure 3 the steering vectors are

Element
number Steering vectors

1 5 1 2 6
2 6 2 3 7
3 7 3 4 8
4 9 5 6 10
5 10 6 7 11
6 11 7 8 12
7 13 9 10 14
8 14 10 11 15
9 15 11 12 16

These steering vectors define a mapping for the element
stiffness matrices’ contribution to the global system. For
example, the diagonals of the global matrix come from
kii, kz2 , k,,, and k,, , and the total stiffness contribu-
tion to the diagonal of the global matrix is

Freedom
number Stiffness contribution

1 W,,),
2 (k,,), (k,J,
3 (kz), &,I,
4 (k,,),
5 (k,,), (k,,),
6

lzz
WzJ 5

7 11 3 W,,h P? 53 5 Irt‘?
8 W,,), 44 ’ (L),
9

C4
(k& 7

10 11 5 &,,I, &,,I 7 W,J,
11 W,,), W&g V&h W.& 5
12 (k,,), (k,,h
13
14 1z 11 B (ka) 7
15 W,,), L),
16 (k,,),

Appl. Math. Modelling, 1987, Vol. 11, October 335

Parallel finite element methods on the DAP: C. H. Lai and H. M. Liddell

1 040

2 EiII

2
3

@Is
4

Assembly
stage

element
2 1

(9 C)

1 2

I

. . .
z

e
r

0

nahix

3 4

element

- Assembly stage

Figure 6 Different stages in parallel global matrix assembly for
rectangular elements

Hence with the mapping defined by the steering vector,
one can easily assign the k’s to the corresponding posi-
tions. This kind of global assembly has the immediate
advantage of being able to handle more complex ele-
ments without changing the code very much. Also, it
can accommodate different types of element numbering
systems as well as irregular boundaries.

Solution of finite element equations

The most important part of the FE calculation is the
parallel solution of a set of FE equations. In this section
a description is given of direct methods and iterative
methods for solving a large sparse matrix system.

Figure 7 Long-vector storage element matrices for an element
with four degrees of freedom

336 Appl. Math. Modelling, 1987, Vol. 11, October

I element I element I n
Figure 8 Neighbouring elements location of global node i using
the upper leftmost storage

Direct methods

Direct solution methods such as Gaussian elimi-
nation, Cholesky factorisation, and LU decomposition
(on a serial computer) can be used. However, there has
been little development on parallel direct solvers on the
DAP, apart from the hybrid Gauss procedure,12 which
was not specifically designed for banded systems, and
some tridiagonal system solvers.r3

The direct tridiagonal solvers on the DAP are based
on a cyclic reduction algorithm.i3*i4 The algorithm
involves the reduction of three adjacent equations to
one equation so that a new set of tridiagonal equations
is formed with different coefficients. The number of
equations at each level of reduction will be one-half that
of the previous level. If the number of unknowns is
n = m - 1, where m = 2q is an integer, and if the
reduction procedure is carried out recursively, then after
log, m - 1 levels of reduction, only the central equa-
tion, i = m/2, remains, which involves only one
unknown and can be solved. The cyclic reduction pro-
cedure for a tridiagonal system therefore involves the
recursive calculation of new coefftcients and right sides;
for level I = 1, 2, . . . , q - 1, one uses

where

and i = 2’ to m - 2’ with step 2’.

Here a, b, c are vectors holding the tridiagonal coeffi-
cients, and k is the right-side vector. Initial values a:‘),
b$“, and ci”) are those in the original set of tridiagonal
equations. The recursive filling in of the solutions for
I = q, q - 1, . . . ,2, 1 gives

xi = (ki’-l’ - c$-~$_~~,_,) - ci’-‘)xi+2~~_l))/bll-1)

Parallel finite element methods on the DAP: C. H. Lai and H. M. Liddell

Other direct methods, such as Gaussian elimination
and Cholesky factorisation are not suitable on the
DAP, unless a hybrid procedure, such as the hybrid
Gauss procedure mentioned previously is used. This
hybrid Gauss procedure applies to dense systems only,
and therefore it would be necessary to develop a hybrid
Cholesky procedure on the DAP for sparse matrices. A
hybrid procedure that uses an incomplete Cholesky fac-
torisation as a preconditioner has been developed by
Wait3 and is discussed in the subsection entitled ‘Pre-
conditioned Conjugate Gradient Methods.’

Iterative methods: Conjugate gradient method

Iterative methods seem to be attractive to most
researchers seeking a parallel solution of FE equations
on the DAP. A similar trend appears in the parallel sol-
ution of FE equations on a MIMD computer, such as
the FE machine of NASA. There are several reasons for
this general trend. First, iterative methods have the
advantage that minimal storage space is required for
implementation, since no fill-in of the zero positions of
the coefficient matrix for the system of linear equations
occurs during computation. Second, an iterative process
may converge in very few steps if a good initial guess is
known. Third, it seems that iterative methods parallelise
better than direct methods and are therefore potentially
viable techniques for solving large sparse linear systems
on parallel computers.

In the development of a parallel solution of a set of
FE equations on the DAP, all the groups have concen-
trated on the application of CG methods with or
without preconditioning.

The following algorithm describes a practical CG
procedure for the solution of a linear system Ax = b,
where A is a symmetric and positive definite n x n
matrix. This method was proposed by Hestenes and
Stiefel in 1952 as a method for solving a symmetric
positive definite n x n system of linear equations.

Conjugate gradient algorithm. Given a system Ax = b,
where A is a symmetric positive definite n x n matrix,

and xkr lk, Pk, zk , b are n-dimensional vectors

x0 := 0; rO := b; p,, := rO (initialise}

for k:= 1 to n do;

cI:= (rk-lT rk-l)

(Pk-1, APk-1)

xk:=xk-l + c?p,_,

rk:=r _ k l- C&k - I

if L/GZSfJ~ < 4 stop

crk9 rk)

p’=(rk-l, rk-l)

Pk:=Pk + /?Pk-1

We can slightly modify this algorithm so that the
matrix A does not need to be assembled in a FE pro-
cedure. This approach was considered by Ducksbury,’

who used the property that A is held as En., Anel and
that all the values in a given A”” will be zero except for
those occurring in rows/columns corresponding to the
variables in the n,, element. Therefore, as mentioned in
the section on global matrix assembly, the global matrix
equation can be solved without assembling the global
matrix A. The method involves the summation of a
certain quantityf$) from a local node L(i) to a global
node i from its neighbouring elements; i.e.,

Fi = C f zi;‘i, (17)
“4

where L(i) maps a local node L(i) to its corresponding
global node i for a particular element n,,. Hence the
formation of (p, Ap) in the CG algorithm, with sub-
scripts k - 1 omitted for simplicity, is

1. W?(i) = C Az!,,,,j,P$“, wi = c wz:,
L(j) n,,

2. (P,AP)= iPiWi
i=l

{n is the total number of degrees of freedom)

The CG implementation on the DAP by the Cam-
bridge group has to be performed after the global
matrix assembly. Although they have suggested that
matrix assembly is not required, they have not given
their method of implementation.6 One of the reasons
claimed for the speedup factors reported by Ducksbury’
is that the calculations described in this section can be
omitted in his approach, but our experience has shown
that the nonassembly CG algorithm based on the
method given above takes longer computationally
because of the summation involved in step 1. However,
a substantial reduction in storage requirement can be
achieved for large problems where the bandwidth is also
large.

Iterative methods: Preconditioned conjugate gradient
methods

The convergence rate for the CG method described
previously is slow, particularly for large problems. One
way to improve this slow convergence is to precondi-
tion A. The method consists of finding a nonsingular
symmetric matrix C such that A (= C-‘AC-T) has an
improved condition number. One can then apply the
CG method to, the transformed system .& = b” by
replacing i, f, b, and A” in the CG algorithm, and the
solution 2 can then be transformed back to x by the
relation x = CpTZ.

We must modify the iteration described above by
setting M = CCT, p = C-‘t, x = CmTj;, zk = M-‘F,,
rk = CF,, which leads to the following preconditioned
CG algorithm.

Preconditioned conjugate gradient algorithm. Given a
system Ax = b, where A is a symmetric positive definite
n x n matrix with matrix element [Alij = aij, and xk ,

IL ? zk , pk , b are n-dimensional vectors.

Appl. Math. Modelling, 1987, Vol. 11, October 337

Parallel finite element methods on the DAP: C. H. Lai and H. M. Liddell

x0 := ; r,, := b {initialise}

solve Mz, = rO

po := zo

fork:=lton do

a:= <~k-~, rk-d
<P&-l, APk-1)

x&:=x&-l + up,_,

rk:=rk_l - a AP, - I

if (J<r,,r,)lJZX < e) stop

solve Mz, = rk

Pk := zk + hk - 1

M is called the preconditioner. The remaining
problem is to choose a suitable preconditioner M such
that a solution x can be easily obtained. The best choice
of M to produce a fast convergence rate depends on
e(M-‘A): the smaller c(M-‘A), the faster convergence
rate. Here c(A) is called the condition number of a non-
singular matrix A and is defined as

c(A) = max l&l min)lil
I Ii

(18)

where Ji, i = 1, n, are eigenvalues of A. Two criteria
suggested by Golub and Van Loan15 for M to be an
effective preconditioner on a serial computer are

1. Mz,_ 1 = r&- 1 is easily solved.
2. If K = M - R, where R is regarded as a remainder
term, then M-‘R should have small or nearly equal
eigenvalues.

Numerous preconditioning methods have been pro-
posed for sequential computers; however, considerable
difficulties arise when the implementation is in a parallel
environment. It is necessary to add another criterion for
M when it is to be implemented on a parallel computer.
This criterion is that M should be easily formed on a
parallel computer.

The choice of preconditions for the CG method on
the DAP has been discussed by Ducksbury’ and Wait3.
Ducksbury’s approach improves convergence by scaling
the linear system of equations. Consider the original
system Ax = b, scaled by matrices D, and Dz , such that

x = D,j;_ b=D,b”

which give rise to a new system 2% = b” with

A” = D; ‘AD,

Ducksbury’ chose DT = 0; ‘, where

(19)

(20)

[Dllij = T for i=j

for i#j

Thus,

iiij = ~ijl~ pi = Xi~ pi = b,lJa,, (21)

Note that in Ducksbury’s CG solution, A is not
assembled. Hence in order to form the new system as

given by equation (21), we need the expressions

%i = C a!$$,L(i) (22)

“d

xy’ = a$‘/ aG(i), G(i) uG(j). G(j)

where L(i) maps a gobal node i onto a local node for a
particular element n,, and G(i) is the inverse of L. The
scaling for x and b remains the same. The transformed
system can then be solved by the CG method. When the
solution ji: converges, it is then resealed back to x by

xi = ZJ& (23)

which serves as the solution of the original system.
Wait’s method is based on block preconditioning.

Essentially, each processor of the DAP contains several
degrees of freedom, so a simple block partition of
matrix A is

D, -& ET3

A= El, D, . . .

[:

with unknowns

Xl
Xa

[:I

x= x3

A simple preconditioner used by Wait and Martindale’
is the diagonal of the matrix A, which is essentially an
extension of Ducksbury’s method described above,
except the number of unknowns per processor is greater
than 1.

A second approach adopted by Wait is based on the
hybrid method of Li et a1.16 which consists of a block
partitioning of the global matrix A such that the orig-
inal system becomes

The partition of the unknowns into two vectors is called
one-way dissection. If a Cholesky factorisation exists,
then A can be written as

and the hybrid solution involves

1. y1 = L; ‘b, (forward substitution).
2. g2 = b, - Wyl = b, - EL;=yl = b, - !l.
3. Solve L, LTx, = g, (use CG method).
4. g1 = yl - pzz = y1 - L;‘E=x, = y1 - wz,
5. xl = LLTgl (backward substitugon).

Note that L, LT can be written as D, - ED; ‘ET, and
an incomplete Cholesky factorisation CG method can
be applied if the preconditioner M is chosen as

M=D,=G,G: (24)

where G, is a lower-triangular matrix in the Cholesky
factorisation of D, . Hence the preconditioned CC algo-
rithm can be applied to solve step 3, with the precondi-
tioner given by equation (24). The implementation on
the DAP is a block to processor mapping, and if L,
consists of L”) (i = 1 1 > 2 , . . .), then each processor will

338 Appl. Math. Modelling, 1987, Vol. 11, October

Parallel finite element methods on the DAP: C. H. Lai and H. M. Liddell

Tab/e 1 Two-dimensional plane-strain problem

Number of iterations using CG algorithm

Degrees of Without With
freedom scaling scaling

740 434 359
174 147 105

Tab/e 2 Two-dimensional Laolace eouation

Number of iterations using block preconditioning method

Freedom per processor

Degrees of freedom 1 4 9

900 27 22 20
3600 54 45 40
8100 66 60

14400 88 80
22500 100

look after each subblock (i) and the hybrid solution
steps can be followed. Note that we need not evaluate
W and L, explicitly, since they can be found in terms of
E and L,.

Some results using these preconditioning methods are
given below. Table I shows the number of iterations for
a 2D solid deformed under plane strain with prescribed
external loads using the CG algorithm on the mini-
DAP. Table 2 shows the number of iterations for a 2D
Laplace equation with Dirichlet boundary conditions,
using a block preconditioning method, performed on
the mainframe DAP. In both cases the time for one CG
iteration for one degree of freedom per processor is
approximately 10 ms.

Another class of preconditioners that appears to be
more suitable for implementation on a parallel com-
puter is obtained by choosing M to be a splitting of A
that describes a linear relaxation method: for example,
the SOR (successive overrelaxation) method, where the
iteration scheme for a system AZ = I is

(tD-L)pim)=(U+~D)lim-li+r (25)

and the superscript (m) denotes the number of iterations
using SOR. D is diag(A), L and U are strictly lower- and
upper-triangular matrices, and o is a relaxation param-
eter. If z(O) is chosen to be zero, then one step of the
SOR method applied to AZ = r gives z(l), which is the
exact solution of Mz = I, where

M = (l/o D - L) (26)

This method is called a one-step preconditioned CG
method and has been applied on a MIMD computer by
Adams.17 Other methods of splitting a matrix A that
involve a parallel relaxation method can be found in
Refs. 9 and 14.

The class of preconditioners described above has
been extended to an m-step preconditioned CG method
by Adams. r7 The idea comes from the consideration of
whether it would be beneficial to have more than one
step of a relaxation method in order to produce a pre-
conditioning matrix M that more closely approximates
A. Some main deductions by Adams are given below.

Consider a splitting of A defined by A = P - Q with
iteration matrix I,, = P-IQ. The m-step relaxation
applied to AZ = r is

P(Z + I, + . . . + z;-‘)_‘z(“)

= P(Z + I,, + ...Z;:-l)-lZ;z(o) + r (27)

If we choose z(O) = 0, equation (26) reduces to

P(z+z,+...+z;-‘)-lz(“‘=r (28)

which gives the m-step preconditioning matrix

M=P(Z+Z,+...+Z;-‘)-’ (29)

Note that M must be symmetric and positive definite to
be considered as a preconditioner for the CG method.
To satisfy these criteria, the following conditions of
splitting a matrix A (= P - Q) with iteration matrix
I,, = P-‘Q must be satisfied:

1. P is a symmetric nonsingular matrix.
2. If (1) is satisfied, then

i for odd number of m, M is positive definite if and
only if P is positive definite.

ii for even number of m, M is positive definite if and
only if P + Q is positive definite.

3. If P + Q is positive definite, then the asymptotic con-
vergence rate p(Z,) < 1.

Note that the third condition must be imposed, other-
wise the iteration scheme for AZ = r will diverge.

It is necessary to examine whether an m-step precon-
ditioning is better than a one-step preconditioning; i.e.,
if M, and Ml are the m-step and one-step precondition-
ing matrices, then c(M;‘A) < c(M;‘A) means that
m-step provides faster convergence. A detailed exami-
nation of these condition numbers is given by Adams,g
which includes cases for even and odd numbers of m.
He has concluded that the m-step preconditioned CG
method gives more improvement than the one-step pre-
conditioned CG method if a suitable relaxation method
is chosen.

The m-step preconditioning algorithm requires a
slight modification to the previous preconditioning
algorithm; i.e.,

replace

solve Mz, = rk

by
apply m steps of a relaxation to AZ, = rk
where splitting of A is P - Q; i.e.,

z~~‘:=p-lQz~m-l’ + p-lr, with ZIP) := 0

Zk := z (m)
k

This method has been implemented on the DAP, and
numerical results for the previous 2D plane-strain
problem using the m-step point Jacobi relaxation CG
method are presented in Table 3. Results for a 2D
steady-potential-flow problem with Dirichlet boundary
conditions and square elements using the m-step point
Jacobi relaxation and the m-step four-colour Gauss-
Seidel iteration method are presented in Table 4.

These results were obtained on a mini-DAP attached
to a Perq scientific workstation. Notice that the number
of iterations is a decreasing function of m. The time per
iteration for the four-colour Gauss-Seidel is approx-
imately four times that of the point Jacobi, so the latter

Appl. Math. Modelling, 1987, Vol. 11, October 339

.
Parallel finite element methods on the DAP: C. H. Lai and H. M. Liddell

is generally preferred on the DAP. The time for the
point Jacobi iteration is approximately equivalent to
the block preconditioning for one degree of freedom per
processor, i.e., about 10 ms. For the 2D plane-strain
problem even values of m do not converge, which means
P + Q is not positive definite (see Table 3). On the other
hand, if p_lQ represents a point Jacobi relaxation
method, one can always be sure that P + Q is positive
definite for a square element with four nodes dis-
cretisation of a 2D steady-potential-flow problem. Note
that the number of degrees of freedom per processor is
one in the above cases; the extension of the method for
more than one degree of freedom per processor is cur-
rently being investigated.

graphics and mesh generation, error analysis tech-
niques, investigation of methods for time-dependent and
nonlinear problems, and the extension to complex arith-
metic for some of the problems that occur in electro-
magnetic theory. For much of this work the computer
environment provided by the mini-DAP + graphics
workstation is highly desirable. While parallel tech-
niques for the various aspects of the problem are being
developed, it is useful to be able to interface the DAP
routines with the serial routines provided by the SERC
FE library. This approach should lead to the gradual
evolution of a fully integrated parallel computer work-
station environment for FE calculations.

Conclusions Acknowledgements

The current status of the implementation of the FE
method on the DAP has been presented. Two types of
mapping for the problem have been adopted: long
vector and upper leftmost storage. The authors find the
former more flexible. There has been little development
as yet in applying direct methods of solution to the
sparse set of FE equations. Current development is
based on an iterative method, namely, the precondi-
tioned CG method. Successful preconditioners that
have been implemented include diagonal scaling, block
preconditioning using a nested dissection technique,
and various relaxation (m-step) methods.

One approach to the problem of obtaining FE soft-
ware in the new computer environment presented by
the highly parallel architecture is to provide a toolkit of
parts (algorithms and subroutines) that can be used by
other workers in the field. This has been the aim of the
DAP FE library development work. Much remains to
be done to complete the set of FE tools; this will
include the development of pre- and postprocessing

This work was supported by the Science and Engineer-
ing Research Council under grant number GR/D/
59427. The authors would like to thank Dr. R. Wait for
his permission to reproduce his results in Table 2.

References

1

2

3

4

5

6

Tab/e 3 Two-dimensional plane-strain problem

Number of iterations using
m-step point Jacobi preconditioner

Degrees of freedom

I

8

McKerrell, A. and Delves, L. M. ‘Solution of the global element
equations on the ICL DAP’, ICL Technical J., 1984,4(l), 50-58
Wait, R. and Martindale, I. ‘Finite elements on the DAP’, in
‘The mathematics of finite elements and applications’, Vol. 5, J.
R. Whiteman, ed., Academic Press, London, 1985, pp. 113-122
Wait, R. ‘The solution of finite element equations on the DAP’,
presented at the Int. Conf. on Vector and Parallel Processing,
Leon, Norway, June 1986
Dixon, L. C. W., Ducksbury, P. G., and Singh, P. ‘A parallel
version of the conjugate gradient algorithm for finite element
problems’, Numerical Optimisation Centre, TRI32, 1982
Ducksbury, P. G. ‘Parallel array processing’, Ellis Horwood
Series in Electrical and Electronic Engineering, 1986
Livesley, R. K., Modi, J. J., and Smithers, T. ‘The use of parallel
computation for finite element calculations’, Cambridge Uni-
versitv. CUEDIF-CAMSITR248. 1985
Davies, S. ‘Notes on a DAP finite element library’, private com-
munication, DAPSU, QMC, 1985
Greenough, C., Emson, C. R. I., and Smith, I. M. ‘The NAG/
SERC finite element library-an applications software library
for finite element analysis’, Rutherford Appleton Lab. Rept. RAL-
84-107

m 740 170

1 464 125
2 - -

3 328 89
4 - -

5 320 87
6 - -

7 282 95

9

10

11

12

Tab/e 4 Two-dimensional steady-potential-flow problem

Number of iterations using
m-step preconditioning

total degrees of freedom = 735

m Point Jacobi Four-colour Gauss-Seidel

1 44 97
2 25 24
3 22 19
4 18 15
5 16 13
6 1.4 12
7 13 10
8 12 10

17

18

19

Adams, L. M. ‘Iterative algorithms for large sparse linear
systems on parallel computers’, NASA Contractor Report
166027, 1982
Baker, A. J. ‘Finite element computational fluid mechanics’,
McGraw-Hill, New York, 1976
Mitchell, A. R. and Wait, R. ‘The finite element method in
partial differential equations’, Wiley, New York, 1977
Bowaen. G. S. J.. Liddell. H. M.. and Hunt. D. J. ‘The solution
of N linear equations on a P-processor parallel computer’,
Technical Report, DAPSU, QMC
Bowgen, G. S. J. and Whiteway, J. ‘A parallel algorithm for
solving tri-diagonal systems’, Technical Report, DAPSU
Hackney, R. W. and Jesshope, C. R. ‘Parallel computers’, Adam
Hilger, Bristol, 1981
Golub, G. H. and Van Loan, C. F. ‘Matrix computation’, North
Oxford Academic. Oxford. 1983
Li, M. R., Nour-bmid, B., and Parlett, B. N. ‘A fast solver free
of fill-in for finite element oroblems’. SIAM J. Num. Anal., 1982,
19, 1233-1242
Adams, L. M. ‘m-Step preconditioned conjugate gradient
methods’, NASA Contractor Report 172130, 1983
Greenough, C. and Robinson, K. ‘Examples in the use of the
finite element library: steady state potential flow’, Rutherford
Appleton Lab Rept., RAL, RL-82-060, 1982
Lai, C. H. ‘Application of DAP to computational aero-
dynamics’, Diss., Dept. of Aeronautical Engineering, Queen Mary
College, 1985

340 Appl. Math. Modelling, 1987, Vol. 11, October

