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This paper reviews the research work that has been done to implement 
the finite element method for solving partial differential equations on 
the ICL distributed array processor (DAP). A brief outline of the prin- 
ciple features of the method is given, followed by details of the novel 
techniques required for implementation on the highly parallel architec- 
ture. Various methods of solution of the finite element equations are 
discussed; both direct and iterative techniques are included. The 
current state-of-the-art favours the use of the preconditioned conju- 
gate gradient method. Some suggestions for future research work on 
parallel finite element methods are made. 
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Introduction 

A number of research workers have considered the 
application of finite element (FE) methods on the DAP. 
Wait, Delves, and their groups at the University of 
Liverpool have carried out research into the implemen- 
tion of both FE techniques and the global element 
method (GEM) on the DAP.lp3 Most of the work was 
directed towards the solution of two-dimensional (2D) 
elliptic problems, but three-dimensional (3D) problems 
have also been studied. Dixon4*’ and his group at Hat- 
field Polytechnic investigated the solution of partial dif- 
ferential equations (p.d.e.s) arising from the 
two-dimensional Poisson equation following a Galerkin 
FE approach, which employed a parallel version of the 
conjugate gradient (CG) algorithm. A novel feature of 
their work is that the assembly of the global stiffness 
matrix is not required. Livesley, Modi, and Smithers6 
have also analysed storage schemes and solution 
methods for parallel FE computations. At Queen Mary 
College, Davies, Lai, Liddell, and Parkinson have been 
basing their work on the SERC/NAG FE library.7*8 
The latter was used as a model for the development of 
DAP FE software with the initial aim of producing suf- 
ficient routines to solve simple 2D and 3D p.d.e.s on 
meshes of modest size by simple triangular, quadrilat- 
eral, or brick elements. The SERC routines required to 
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solve such problems are general enough to solve many 
other types of problems and the DAP approach has 
been to provide equivalent routines but designed spe- 
cifically for the highly parallel DAP hardware, which 
maintain this generality. As a result of this work, DAP 
routines have been produced that provide a framework 
for solving FE problems on the DAP, which have been 
made available to the DAP user community. This 
approach was adopted in order to maximise progress in 
the short term, but will probably not yield an optimal 
DAP FE package, since the structure of existing pack- 
ages, written for serial machines, is not optimal for 
DAP-oriented algorithms. The overall structure 
required for an efficient DAP mapping is one of the 
points under consideration. However, there are other 
advantages in basing the work on the FE library. 
Unlike many commercial FE packages, the library has 
been designed to be highly flexible, particularly for use 
in the development field. The documentation style is 
based on that used in the NAG library, as is the DAP 
subroutine library, so it is easy to incorporate appropri- 
ate routines from the latter. 

To date, most FE research on the DAP has concen- 
trated on the processing stage of the calculations. The 
mainframe DAP is a 64 x 64 array of simple l-bit pro- 
cessors (Figure Z), each connected vertically to its own 
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Figure 7 The mainframe DAP 

16K bits of store and horizontally to its four nearest 
neighbours on a rectangular grid. There are also row 
and column highways, which permit fast access to ele- 
ments in the same row or column. The DAP is a SIMD 
(single-instruction multiple-data) machine-the master 
control unit issues the same set of instructions to all 
processors-but at any instant some processors may be 
switched off, thus providing a degree of local autonomy. 
The DAP array can also be treated as a one- 
dimensional “long vector ” of 4096 processors. The 
DAP is used via a host processor, the ICL 2980, which 
has limited interactive capabilities and is not suited to 
image processing and graphics applications. A more 
interactive environment is provided by the 1024 pro- 
cessor mini-DAP attached to a scientific workstation, 
which has good graphics and windowing facilities; the 
latter allows the viewing of a number of concurrent pro- 
cesses. This type of system encourages the development 
of parallel mesh generation and graphics algorithms to 
be incorporated into the pre- and postprocessing sec- 
tions of the code. Some of the results produced in this 
paper were obtained on the mainframe DAP, others on 
the mini-DAP. The individual processor speed of the 
latter is slightly greater than the former, but the larger 
array and store size of the mainframe DAP is advanta- 
geous for large FE problems. However, future mini- 
DAPs are expected to have much more store than is 
available on the prototypes currently used. 

There is also intensive research at NASA Langley on 
the application of the FE machine to the FE method. 
This machine is a MIMD (multiple-instruction 
multiple-data) computer. More details of the hardware 
can be found in Ref. 9. In this review the main emphasis 
is on current developments in the use of a SIMD com- 
puter (the DAP) for the FE method. However, some 
parallel algorithms that have been developed by the 
group at NASA Langley for use on their MIMD FE 
machine are included, since they appear suitable also 
for SIMD architectures. 

The finite element method 

The FE method is a numerical technique for obtaining 
approximate solutions of boundary value problems. 
These boundary value problems usually arise from the 
modelling of physical behaviour and can be divided into 
three groups : 

1. Equilibrium problems involving stationary pheno- 
mena (i.e., phenomena that are independent of time and 
that can be reduced to equations of elliptic type (e.g., 
Laplace’s equation)) 
2. Eigenvalue problems, which involve eigenvalue prob- 
lems for elliptic operators (e.g., the Helmholtz equation) 
3. Evolution problems, whose solutions depend on time 
and are characterised by parabolic or hyperbolic equa- 
tions (e.g., the diffusion equation, the wave equation) 

In the FE technique the domain of interest is divided 
into elements of finite dimension. These elements are 
referred to as ‘finite elements’. Each element consists of 
some nodal points or nodes on its boundary. The 
unknown field variables @ of an element can be approx- 
imated in terms of the nodal variables 4 and the shape 
functions N of the element, namely 

CD = NT4 (1) 

This equation is the FE discretisation. For a standard 
element of square shape as given in Figure 2 with four 
nodal points and nodal unknowns, 41, I$~, 43, cj4, the 
bilinear shape functions are given by 

Ni = t(l + 55&l + V/i) i = 1, 2, 3, 4 (2) 

where ti and vi are local coordinates of node i of the 
standard element in Figure 2 and t, q are local coordi- 
nates of an arbitrary point inside the standard element. 
The subscripts of the local unknowns are called the 
local freedom numbers. The number of unknowns per 
node is often referred to as ‘degrees of freedom’. Here, 
each node has one degree of freedom, and each square 
element has four degrees of freedom. 

Consider a rectangular computational domain 
divided into nine square elements, as shown in Figure 3. 
At this stage it is necessary to define what is meant by 
the nodal geometry, steering vector, element topology, 
and element geometry. The nodal geometry describes 
the coordinates of each node; e.g., node 6 in Figure 3 
has nodal geometry (x6, ys) or (3, 3) if the domain is a 
unit square; in general, for any node i the nodal 
geometry is (xi, y,). The steering vector is the global 
nodal numbering of an element in the direction of the 
local nodal numbering of the standard element; e.g., the 
steering vectors for elements 3 and 5 of Figure 3 are [7, 

(-1, 1) (1, 1) 

1 

1 5 

4 

C-1, -1) (1, -1) 
Figure 2 Local coordinates and node numbering of a standard 
square element 
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3, 4, S] and [ 10, 6, 7, 1 l] ; for any general quadrilateral 
as shown in Figure 4, the steering vector is [i, j, k, 1-J. 
The element topology specifies the topological shape 
and type of an element using nnod, n,, and the steering 
vector of a given element; e.g., element topology of 
element 5 is [4, 1, 10, 6, 7, 111, where nnod = 4 is used to 
denote the number of nodes per element and n, = 1 is 
used to denote a square element. Different values of n, 
should be used for different types of elements; for a 
general element as shown in Figure 4, the element 

topology is Cnnod, n,, i, j, k, 11. The element geometry 
specifies the geometrical location of an element; e.g., the 
element geometry of element 5 of Figure 3, assuming a 
unit square domain, is 

Consider the 2D potential flow equation 

(3) 

where K, and K, are permeabilities in the x- and y- 
directions, and Q is the local source or sink. 

Several mathematical formulations”,” can use the 
FE discretisation: e.g., Galerkin’s method, the 

Figure 3 A computational domain with nine square elements 

Y 

.i i 

k 

t------x 
Figure 4 Global node numbering of a quadrilateral element 

Rayleigh-Ritz method (applicable only to self-adjoint 
systems), and the least-squares method. 

Galerkin’s method involves the orthogonalisation 
process of the residual and an arbitrary change &II of 
the function @. For example, the potential flow equa- 
tion has residual 

l =K,$+KyE+Q 
a3 (4) 

and, according to the definition, the orthogonalisation 
is thus 

(E, 6@) = 0 (5) 

i.e.. 

K,$+K,$+Q 6Q,dxdy=O 
> 

(6a) 

Substituting the FE discretisation as given by equation 
(1) into equation (6a) gives 

+ KY c i ~ 4i + Q C Nj S~j dx dy (6b) 
j 

which leads to an element equation given by 

+ C s4j QNj dx dy = 0 (6~) 
j 

d 

The element stiffness matrix k is thus 

k, = 
a2N. 

K,N,----! 
ax2 + KY Nj 

3 

aY2 

dx dy 

(7a) 

and the element source vector Qe’ is 

Q;‘= - 
ss 

QiNidxdy (7b) 

el 

In the Rayleigh-Ritz method a functional F, called 
the energy functional, is defined such that the minimum 
is the solution of the given differential equation. For the 
2D potential flow equation, we can define 

Substituting the FE discretisation into the functional F 
leads to 
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Differentiating with respect to bi and setting to zero 
give 

+2K,$&%4j)-2QiA$]dxdy=0 (9b) 

Differentiating equation (9b) with respect to tii leads to 
the Hessian matrix V2Fne1 such that 

V2F!? = V 2K 
aN. aN' aN. aN. 
L - + 2K, L - 

x ax ax ay ay 
dx dy (SC) 

el 

which must be positive definite to ensure an occurrence 
of a minimum for F. The element stiffness matrix k is 

k, = 2K, 2 2 + 2K, % T 
> 

dx dy (10a) 

el 

and the element source vector Qel is 

Q;' = 
ss 

2Qi Ni dx dy 

el 

(IOb) 

The least-squares method also involves a definition 
for a functional F, which is given by the inner product 
of the residual; i.e., 

F = (E, E) (11) 

A similar minimisation process to the one previously 
given can be carried out. 

The element stiffness matrix usually involves integra- 
tion such as 

11 

ss 
fk Y) dx dy = 

ss 
fk yWU)I dt dr (12) 

0 0 

Here the Jacobian matrix J is 

ax ay 
J= z z 

[ 1 ax ay 
T&g 

(13) 

Usually equation (12) is numerically integrated, and 
Gaussian quadrature lo is used, which reduces an inte- 
gration to a summation, as shown below: 

TT f(‘G Y) dx dY = i Wi I J(5i > Vi) I f(Xi 2 YJ (14) 
JJ i=l 

where wi are called the weight coefficients and n is the 
number of quadrature points. Details of the abscissae 
and weight coefficients can be found in Ref. 10. 

Havilg obtained the element stiffness matrix k and 
the element source vector Qel, we must construct the 
global matrix and the global source vector. This process 
essentially requires the proper positioning of each local 
node of an element in the global system. Consider the 
discretised physical domain with nine finite elements as 
shown in Figure 3; the steering vector for element 3 is 
[7, 3, 4, S]. The element stiffness matrix for element 3 is 
(kij)J; therefore the stiffness contribution from element 3 

to the global system is simply the assignment 

(k,,), + K,, (k,,), -+KT3 (k& +K,4 (k,,), +K,s 

(M3 + KM (k,,), +K33 (M, +K34 (k24h -'KM 

(k&+K4, @32)3+& (k,,),+L h),+K,S 

h),-,fC, (k,,),-+& (k&-+fh (LJ,+KxS 

Hence the global system is 

K4=b (15) 

where K is the global stiffness matrix, which is usually a 
symmetric positive definite matrix, 4 is the global 
unknown vector, and b is the global source vector. 

In this mathematical formulation the boundary con- 
ditions are of Dirichlet type. For natural boundary con- 
ditions the integration previously given should use 
Green’s formula. For example, in Galerkin’s formula- 
tion the integral given by equation (6a) should yield 

60 dx dy 

aaaaso, 
K,~~+Ky-- 

ay ay 
dx dy 

+jq,d@dS+~jQ%I)dxdy 

S 

rather than equation (6b). Here q,, is the normal deriv- 
ative along the boundary S. The line integral along the 
boundary can be carried out by numerical integration 
using the Gaussian quadrature formula. 

The problem is now reduced to the solution of the set 
of simultaneous equations 

Ax = b (16) 

where A is a symmetric positive definite matrix. The 
fourth section describes various parallel solution 
methods for a large sparse system of equations. 

A typical FE program’ for the solution of a field 
problem includes 

1. Nodal geometry and element data that can be pro- 
duced by a mesh generation routine or a large amount 
of input data 
2. Element stiffness matrix and source vector calcu- 
lations 
3. Global stiffness matrix and source vector assembly 
4. Introduction of boundary conditions 
5. Solution of FE equations 

Parallel implementation of finite element on the 
DAP 

Element topology and geometry 

Researchers have developed two methods for 
mapping finite elements onto the DAP. 

S. Davies’ and R. Wait 2*3 have used a ‘long-vector’ 
method, where elements are consecutively stored in a 
long vector according to the element numbering order. 
Figure 5(a) illustrates this element storage scheme on a 
4 x 4 DAP for the computational domain in Figure 3. 
With this type of storage the x-coordinates of the nodes 
are kept in a long vector with declaration X( ,), and 
similarly for y-coordinates. The element topology is 
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shaded region 
masked Cl” 

figure 5(a) Long-vector storage of finite elements. i = 1, , 16 
refers to the global nodal numbering, and a circled number refers 
to the element numbering (see Figure 3) 

shaded region to 
be masked out 

1 5 9 13 

2 6 10 14 

3 1 11 15 

4 8 12 16 

Figure 5(6) Upper leftmost storage of finite elements. i= 1, 2, 
. . . . 16 refers to the global nodal numbering, and a circled number 
refers to the element numbering (see Figure 3) 

kept in six long vectors with the matrix declaration 
ELTOP( ,, 6). It is because the elements are stored 
according to the element numbering order that a 
random allocation’ of these elements to the long vector 
is possible. Such an element ordering usually arises 
from irregular boundaries and grids. 

Ducksbury of Hatfield Polytechnic has used an 
‘upper leftmost’ element storage scheme on the DAP. 
This storage method is also suggested by Livesley, 
Modi, and Smithers’j of Cambridge University. 
Figure 5(b) shows the upper leftmost storage on a 4 x 4 
DAP for the example as given in Figure 3. With this 
type of storage the x- and y-coordinates of the nodes 
are kept in the processors at the corresponding nodes. 

In order to generate the element geometry for the 
long-oector storage (Figure 5(a)), we define a mapping 
that selects the required node number for a particular 
element and the corresponding coordinates. This 
mapping can be done via the DAP library utility 
routine MOlPERMUTEl. The following sketch illus- 
trates the mapping of global coordinates of all the 
nodes (see Figure 3) referred to the first node (upper 
right node) of the standard element (see Figure 2). In 
this example, since nodes 1, 2, 3, 4, 8, 12, and 16 are not 
the upper right node of any element, they are not 
involved in the mapping. A similar mapping must be 
done for the other nodes (i.e., nodes 2, 3, and 4 of the 
standard element) for both x- and y-coordinates. 

Local node MO1 PERMUTE1 Global x-coordinates 
1 mapping x(i), i= 1, 2, .., 16 

x(16) 

To generate the element geometry for the upper left- 
most storage, we can use shift functions. For example, 
coordinates for local node 1 are obtained as 

GEOM(,,l, 1) = SHWP(X) 

GEOM(,,l, 2) = SHWP(Y) 

Coordinates for local node 2 are 

GEOM(,,2, 1) = X GEOM(,,2, 2) = Y 

and so on, where the declaration GEOM(,,4, 2) is used 
to hold the element geometry of each element with four 
nodal points and two spatial coordinates per point. 

One of the advantages of the long-vector storage of 
elements is that it can handle arbitrary element shapes. 
An immediate disadvantage of upper leftmost storage is 
that the local numbering system has to follow the one 
shown in Figure 2 if the above shift functions are 
adopted. Moreover, the long-vector storage, which 
permits random allocation of elements to processors, 
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can more easily incorporate an automatic mesh gener- 
ation where there is normally a random numbering of 
the generated elements. 

Element stiffness matrix 

Instead of calculating the element stiffness matrices 
one by one as in a serial code, we can form them simul- 
taneously; i.e., a serial algorithm can be used vertically. 
For example, the local derivates, the Jacobian matrices, 
and the global derivatives can be obtained vertically by 
a serial code. However, the code has to be accompanied 
by the appropriate mask for long-vector or upper left- 
most element storage. To perform the numerical inte- 
gration that produces the element stiffness matrix, we 
can adopt a numerical integration scheme, such as the 
one in equation (14). 

In the element matrix calculation, irrespective of 
whether long-vector or upper leftmost element storage 
is used, the code is a simple extension of the serial code 
so that parallel operations can be carried out. 

Global matrix assembly 

This section deals with an important part of the 
parallel implementation of finite elements on the DAP. 
Since the ordering of the unknowns in the global matrix 
K (see equation (15)) is nodal, the solution must be 
based on a processor allocation that is node based 
rather than element based. Thus a FE computation on 
the DAP has a reassignment and global assembly phase 
that has no direct counterpart in a serial algorithm. If 
adjacent elements are assembled on different processors, 
it is necessary for data to be transmitted from one pro- 
cessor to another in order to assemble the global 
system. Again there are two types of assembly tech- 
niques, depending on the method of FE storage. 

The Hatfield group4 has developed a parallel CG 
method such that the assembly of the global stiffness 
matrix is not required. This method is described in the 
next section in more detail. The Cambridge group6 has 
suggested an assembly technique based on the upper 
leftmost storage, which is used to obtain the global 
stiffness matrix in band matrix form as follows. 

Consider a 4 x 4 DAP and a physical domain 
divided into nine elements with local numbering system 
as given in Figure 3, with the normal definition for 
element stiffness matrix (kij),e,, where the subscript n,, 
represents the element number; if k(,,i, j) is the corre- 
sponding declaration in a DAPFORTRAN program, 
then some of the matrix coefficients are 

[ 

(k& (k&4 (k,,), 0 

kL2, 2) = (k,,), (k&S (k,,), 0 

(k,,), (k&i (k,,), 0 
0 0 00 1 

where k(,,4, 4) is a matrix array declaration on a 4 x 4 
DAP. To calculate K,,, in the global matrix, we need 
the sum of (k,,),, (k33)4, (k,,), , (k,,), . Therefore the 
diagonal of the global matrix can be written in DAP- 
FORTRAN as 

k(,,2, 2) + SHSW,,3, 3)) + SHJWW4, 4))) 

+ SHSP(SHEP(k(,,4, 4))) 

The first off-diagonal of the band matrix is 
SHEP(k(,,l, 4)) + k(,,2, 3), the second is zero, the third is 
SHSP(k(,,3, l)), the fourth is SHSP(k(,,3, 4)) + k(,,2, l), 
and the fifth is k(,,2, 4). 

This process may be illustrated by a diagrammatic 
approach, as in Figure 6, which involves five different 
stages for quadrilateral elements during the assembly 
phase. The tail and head of each arrow in Figure 6 rep- 
resent the subscripts i and j in the stiffness matrix kij, 
where ij are local node numberings (Figure 2). For 
example, in stage 4 the subscripts ij are 21 and 34; 
hence k,, and k,, of an appropriate element are added 
up. This type of global assembly has the immediate dis- 
advantage that a specified format in the numbering of 
nodes and elements has to be followed. For example, 
the DAPFORTRAN code given previously for the 
global matrix assembly is valid only for the numbering 
system in Figure 2. Furthermore, it is very difficult to 
generalise to complicated elements. 

A different approach is to use long-vector storage, 
which was done by Davies’ and Wait and Martindale.’ 
Figure 7 shows the element matrices on the DAP, where 
each rectangular cube represents a long vector. Follow- 
ing the global matrix assembly given in the second 
section, it is very useful to have the steering vector on 
hand, i.e., the global node numbering of each element in 
the direction of the local node numbering of a standard 
element. For Figure 3 the steering vectors are 

Element 
number Steering vectors 

1 5 1 2 6 
2 6 2 3 7 
3 7 3 4 8 
4 9 5 6 10 
5 10 6 7 11 
6 11 7 8 12 
7 13 9 10 14 
8 14 10 11 15 
9 15 11 12 16 

These steering vectors define a mapping for the element 
stiffness matrices’ contribution to the global system. For 
example, the diagonals of the global matrix come from 
kii, kz2 , k,,, and k,, , and the total stiffness contribu- 
tion to the diagonal of the global matrix is 

Freedom 
number Stiffness contribution 

1 W,,), 
2 (k,,), (k,J, 
3 (kz), &,I, 
4 (k,,), 
5 (k,,), (k,,), 
6 

lzz 
WzJ 5 

7 11 3 W,,h P? 53 5 Irt‘? 
8 W,,), 44 ’ (L), 
9 

C4 
(k& 7 

10 11 5 &,,I, &,,I 7 W,J, 
11 W,,), W&g V&h W.& 5 
12 (k,,), (k,,h 
13 
14 1z 11 B (ka) 7 
15 W,,), L), 
16 (k,,), 
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- Assembly stage 

Figure 6 Different stages in parallel global matrix assembly for 
rectangular elements 

Hence with the mapping defined by the steering vector, 
one can easily assign the k’s to the corresponding posi- 
tions. This kind of global assembly has the immediate 
advantage of being able to handle more complex ele- 
ments without changing the code very much. Also, it 
can accommodate different types of element numbering 
systems as well as irregular boundaries. 

Solution of finite element equations 

The most important part of the FE calculation is the 
parallel solution of a set of FE equations. In this section 
a description is given of direct methods and iterative 
methods for solving a large sparse matrix system. 

Figure 7 Long-vector storage element matrices for an element 
with four degrees of freedom 
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I element I element I n 
Figure 8 Neighbouring elements location of global node i using 
the upper leftmost storage 

Direct methods 

Direct solution methods such as Gaussian elimi- 
nation, Cholesky factorisation, and LU decomposition 
(on a serial computer) can be used. However, there has 
been little development on parallel direct solvers on the 
DAP, apart from the hybrid Gauss procedure,12 which 
was not specifically designed for banded systems, and 
some tridiagonal system solvers.r3 

The direct tridiagonal solvers on the DAP are based 
on a cyclic reduction algorithm.i3*i4 The algorithm 
involves the reduction of three adjacent equations to 
one equation so that a new set of tridiagonal equations 
is formed with different coefficients. The number of 
equations at each level of reduction will be one-half that 
of the previous level. If the number of unknowns is 
n = m - 1, where m = 2q is an integer, and if the 
reduction procedure is carried out recursively, then after 
log, m - 1 levels of reduction, only the central equa- 
tion, i = m/2, remains, which involves only one 
unknown and can be solved. The cyclic reduction pro- 
cedure for a tridiagonal system therefore involves the 
recursive calculation of new coefftcients and right sides; 
for level I = 1, 2, . . . , q - 1, one uses 

where 

and i = 2’ to m - 2’ with step 2’. 

Here a, b, c are vectors holding the tridiagonal coeffi- 
cients, and k is the right-side vector. Initial values a:‘), 
b$“, and ci”) are those in the original set of tridiagonal 
equations. The recursive filling in of the solutions for 
I = q, q - 1, . . . ,2, 1 gives 

xi = (ki’-l’ - c$-~$_~~,_,) - ci’-‘)xi+2~~_l))/bll-1) 
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Other direct methods, such as Gaussian elimination 
and Cholesky factorisation are not suitable on the 
DAP, unless a hybrid procedure, such as the hybrid 
Gauss procedure mentioned previously is used. This 
hybrid Gauss procedure applies to dense systems only, 
and therefore it would be necessary to develop a hybrid 
Cholesky procedure on the DAP for sparse matrices. A 
hybrid procedure that uses an incomplete Cholesky fac- 
torisation as a preconditioner has been developed by 
Wait3 and is discussed in the subsection entitled ‘Pre- 
conditioned Conjugate Gradient Methods.’ 

Iterative methods: Conjugate gradient method 

Iterative methods seem to be attractive to most 
researchers seeking a parallel solution of FE equations 
on the DAP. A similar trend appears in the parallel sol- 
ution of FE equations on a MIMD computer, such as 
the FE machine of NASA. There are several reasons for 
this general trend. First, iterative methods have the 
advantage that minimal storage space is required for 
implementation, since no fill-in of the zero positions of 
the coefficient matrix for the system of linear equations 
occurs during computation. Second, an iterative process 
may converge in very few steps if a good initial guess is 
known. Third, it seems that iterative methods parallelise 
better than direct methods and are therefore potentially 
viable techniques for solving large sparse linear systems 
on parallel computers. 

In the development of a parallel solution of a set of 
FE equations on the DAP, all the groups have concen- 
trated on the application of CG methods with or 
without preconditioning. 

The following algorithm describes a practical CG 
procedure for the solution of a linear system Ax = b, 
where A is a symmetric and positive definite n x n 
matrix. This method was proposed by Hestenes and 
Stiefel in 1952 as a method for solving a symmetric 
positive definite n x n system of linear equations. 

Conjugate gradient algorithm. Given a system Ax = b, 
where A is a symmetric positive definite n x n matrix, 

and xkr lk, Pk, zk , b are n-dimensional vectors 

x0 := 0; rO := b; p,, := rO (initialise} 

for k:= 1 to n do; 

cI:= (rk-lT rk-l) 

(Pk-1, APk-1) 

xk:=xk-l + c?p,_, 

rk:=r _ k l- C&k - I 

if L/GZSfJ~ < 4 stop 

crk9 rk) 

p’=(rk-l, rk-l) 

Pk:=Pk + /?Pk-1 

We can slightly modify this algorithm so that the 
matrix A does not need to be assembled in a FE pro- 
cedure. This approach was considered by Ducksbury,’ 

who used the property that A is held as En., Anel and 
that all the values in a given A”” will be zero except for 
those occurring in rows/columns corresponding to the 
variables in the n,, element. Therefore, as mentioned in 
the section on global matrix assembly, the global matrix 
equation can be solved without assembling the global 
matrix A. The method involves the summation of a 
certain quantityf$) from a local node L(i) to a global 
node i from its neighbouring elements; i.e., 

Fi = C f zi;‘i, (17) 
“4 

where L(i) maps a local node L(i) to its corresponding 
global node i for a particular element n,,. Hence the 
formation of (p, Ap) in the CG algorithm, with sub- 
scripts k - 1 omitted for simplicity, is 

1. W?(i) = C Az!,,,,j,P$“, wi = c wz:, 
L(j) n,, 

2. (P,AP)= iPiWi 
i=l 

{n is the total number of degrees of freedom) 

The CG implementation on the DAP by the Cam- 
bridge group has to be performed after the global 
matrix assembly. Although they have suggested that 
matrix assembly is not required, they have not given 
their method of implementation.6 One of the reasons 
claimed for the speedup factors reported by Ducksbury’ 
is that the calculations described in this section can be 
omitted in his approach, but our experience has shown 
that the nonassembly CG algorithm based on the 
method given above takes longer computationally 
because of the summation involved in step 1. However, 
a substantial reduction in storage requirement can be 
achieved for large problems where the bandwidth is also 
large. 

Iterative methods: Preconditioned conjugate gradient 
methods 

The convergence rate for the CG method described 
previously is slow, particularly for large problems. One 
way to improve this slow convergence is to precondi- 
tion A. The method consists of finding a nonsingular 
symmetric matrix C such that A (= C-‘AC-T) has an 
improved condition number. One can then apply the 
CG method to, the transformed system .& = b” by 
replacing i, f, b, and A” in the CG algorithm, and the 
solution 2 can then be transformed back to x by the 
relation x = CpTZ. 

We must modify the iteration described above by 
setting M = CCT, p = C-‘t, x = CmTj;, zk = M-‘F,, 
rk = CF,, which leads to the following preconditioned 
CG algorithm. 

Preconditioned conjugate gradient algorithm. Given a 
system Ax = b, where A is a symmetric positive definite 
n x n matrix with matrix element [Alij = aij, and xk , 

IL ? zk , pk , b are n-dimensional vectors. 
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x0 := ; r,, := b {initialise} 

solve Mz, = rO 

po := zo 

fork:=lton do 

a:= <~k-~, rk-d 
<P&-l, APk-1) 

x&:=x&-l + up,_, 

rk:=rk_l - a AP, - I 

if (J<r,,r,)lJZX < e) stop 

solve Mz, = rk 

Pk := zk + hk - 1 

M is called the preconditioner. The remaining 
problem is to choose a suitable preconditioner M such 
that a solution x can be easily obtained. The best choice 
of M to produce a fast convergence rate depends on 
e(M-‘A): the smaller c(M-‘A), the faster convergence 
rate. Here c(A) is called the condition number of a non- 
singular matrix A and is defined as 

c(A) = max l&l min )lil 
I Ii 

(18) 

where Ji, i = 1, . . . . n, are eigenvalues of A. Two criteria 
suggested by Golub and Van Loan15 for M to be an 
effective preconditioner on a serial computer are 

1. Mz,_ 1 = r&- 1 is easily solved. 
2. If K = M - R, where R is regarded as a remainder 
term, then M-‘R should have small or nearly equal 
eigenvalues. 

Numerous preconditioning methods have been pro- 
posed for sequential computers; however, considerable 
difficulties arise when the implementation is in a parallel 
environment. It is necessary to add another criterion for 
M when it is to be implemented on a parallel computer. 
This criterion is that M should be easily formed on a 
parallel computer. 

The choice of preconditions for the CG method on 
the DAP has been discussed by Ducksbury’ and Wait3. 
Ducksbury’s approach improves convergence by scaling 
the linear system of equations. Consider the original 
system Ax = b, scaled by matrices D, and Dz , such that 

x = D,j;_ b=D,b” 

which give rise to a new system 2% = b” with 

A” = D; ‘AD, 

Ducksbury’ chose DT = 0; ‘, where 

(19) 

(20) 

[Dllij = T for i=j 

for i#j 

Thus, 

iiij = ~ijl~ pi = Xi~ pi = b,lJa,, (21) 

Note that in Ducksbury’s CG solution, A is not 
assembled. Hence in order to form the new system as 

given by equation (21), we need the expressions 

%i = C a!$$,L(i) (22) 

“d 

xy’ = a$‘/ aG(i), G(i) uG( j). G(j) 

where L(i) maps a gobal node i onto a local node for a 
particular element n,, and G(i) is the inverse of L. The 
scaling for x and b remains the same. The transformed 
system can then be solved by the CG method. When the 
solution ji: converges, it is then resealed back to x by 

xi = ZJ& (23) 

which serves as the solution of the original system. 
Wait’s method is based on block preconditioning. 

Essentially, each processor of the DAP contains several 
degrees of freedom, so a simple block partition of 
matrix A is 

D, -& ET3 

A= El, D, . . . 

[: . . . . . . 

with unknowns 

Xl 
Xa 

[:I 

x= x3 

A simple preconditioner used by Wait and Martindale’ 
is the diagonal of the matrix A, which is essentially an 
extension of Ducksbury’s method described above, 
except the number of unknowns per processor is greater 
than 1. 

A second approach adopted by Wait is based on the 
hybrid method of Li et a1.16 which consists of a block 
partitioning of the global matrix A such that the orig- 
inal system becomes 

The partition of the unknowns into two vectors is called 
one-way dissection. If a Cholesky factorisation exists, 
then A can be written as 

and the hybrid solution involves 

1. y1 = L; ‘b, (forward substitution). 
2. g2 = b, - Wyl = b, - EL;=yl = b, - !l. 
3. Solve L, LTx, = g, (use CG method). 
4. g1 = yl - pzz = y1 - L;‘E=x, = y1 - wz, 
5. xl = LLTgl (backward substitugon). 

Note that L, LT can be written as D, - ED; ‘ET, and 
an incomplete Cholesky factorisation CG method can 
be applied if the preconditioner M is chosen as 

M=D,=G,G: (24) 

where G, is a lower-triangular matrix in the Cholesky 
factorisation of D, . Hence the preconditioned CC algo- 
rithm can be applied to solve step 3, with the precondi- 
tioner given by equation (24). The implementation on 
the DAP is a block to processor mapping, and if L, 
consists of L”) (i = 1 1 > 2 , . . .), then each processor will 

338 Appl. Math. Modelling, 1987, Vol. 11, October 



Parallel finite element methods on the DAP: C. H. Lai and H. M. Liddell 

Tab/e 1 Two-dimensional plane-strain problem 

Number of iterations using CG algorithm 

Degrees of Without With 
freedom scaling scaling 

740 434 359 
174 147 105 

Tab/e 2 Two-dimensional Laolace eouation 

Number of iterations using block preconditioning method 

Freedom per processor 

Degrees of freedom 1 4 9 

900 27 22 20 
3600 54 45 40 
8100 66 60 

14400 88 80 
22500 100 

look after each subblock (i) and the hybrid solution 
steps can be followed. Note that we need not evaluate 
W and L, explicitly, since they can be found in terms of 
E and L,. 

Some results using these preconditioning methods are 
given below. Table I shows the number of iterations for 
a 2D solid deformed under plane strain with prescribed 
external loads using the CG algorithm on the mini- 
DAP. Table 2 shows the number of iterations for a 2D 
Laplace equation with Dirichlet boundary conditions, 
using a block preconditioning method, performed on 
the mainframe DAP. In both cases the time for one CG 
iteration for one degree of freedom per processor is 
approximately 10 ms. 

Another class of preconditioners that appears to be 
more suitable for implementation on a parallel com- 
puter is obtained by choosing M to be a splitting of A 
that describes a linear relaxation method: for example, 
the SOR (successive overrelaxation) method, where the 
iteration scheme for a system AZ = I is 

(tD-L)pim)=(U+~D)lim-li+r (25) 

and the superscript (m) denotes the number of iterations 
using SOR. D is diag(A), L and U are strictly lower- and 
upper-triangular matrices, and o is a relaxation param- 
eter. If z(O) is chosen to be zero, then one step of the 
SOR method applied to AZ = r gives z(l), which is the 
exact solution of Mz = I, where 

M = (l/o D - L) (26) 

This method is called a one-step preconditioned CG 
method and has been applied on a MIMD computer by 
Adams.17 Other methods of splitting a matrix A that 
involve a parallel relaxation method can be found in 
Refs. 9 and 14. 

The class of preconditioners described above has 
been extended to an m-step preconditioned CG method 
by Adams. r7 The idea comes from the consideration of 
whether it would be beneficial to have more than one 
step of a relaxation method in order to produce a pre- 
conditioning matrix M that more closely approximates 
A. Some main deductions by Adams are given below. 

Consider a splitting of A defined by A = P - Q with 
iteration matrix I,, = P-IQ. The m-step relaxation 
applied to AZ = r is 

P(Z + I, + . . . + z;-‘)_‘z(“) 

= P(Z + I,, + ...Z;:-l)-lZ;z(o) + r (27) 

If we choose z(O) = 0, equation (26) reduces to 

P(z+z,+...+z;-‘)-lz(“‘=r (28) 

which gives the m-step preconditioning matrix 

M=P(Z+Z,+...+Z;-‘)-’ (29) 

Note that M must be symmetric and positive definite to 
be considered as a preconditioner for the CG method. 
To satisfy these criteria, the following conditions of 
splitting a matrix A (= P - Q) with iteration matrix 
I,, = P-‘Q must be satisfied: 

1. P is a symmetric nonsingular matrix. 
2. If (1) is satisfied, then 

i for odd number of m, M is positive definite if and 
only if P is positive definite. 

ii for even number of m, M is positive definite if and 
only if P + Q is positive definite. 

3. If P + Q is positive definite, then the asymptotic con- 
vergence rate p(Z,) < 1. 

Note that the third condition must be imposed, other- 
wise the iteration scheme for AZ = r will diverge. 

It is necessary to examine whether an m-step precon- 
ditioning is better than a one-step preconditioning; i.e., 
if M, and Ml are the m-step and one-step precondition- 
ing matrices, then c(M;‘A) < c(M;‘A) means that 
m-step provides faster convergence. A detailed exami- 
nation of these condition numbers is given by Adams,g 
which includes cases for even and odd numbers of m. 
He has concluded that the m-step preconditioned CG 
method gives more improvement than the one-step pre- 
conditioned CG method if a suitable relaxation method 
is chosen. 

The m-step preconditioning algorithm requires a 
slight modification to the previous preconditioning 
algorithm; i.e., 

replace 

solve Mz, = rk 

by 
apply m steps of a relaxation to AZ, = rk 
where splitting of A is P - Q; i.e., 

z~~‘:=p-lQz~m-l’ + p-lr, with ZIP) := 0 

Zk := z (m) 
k 

This method has been implemented on the DAP, and 
numerical results for the previous 2D plane-strain 
problem using the m-step point Jacobi relaxation CG 
method are presented in Table 3. Results for a 2D 
steady-potential-flow problem with Dirichlet boundary 
conditions and square elements using the m-step point 
Jacobi relaxation and the m-step four-colour Gauss- 
Seidel iteration method are presented in Table 4. 

These results were obtained on a mini-DAP attached 
to a Perq scientific workstation. Notice that the number 
of iterations is a decreasing function of m. The time per 
iteration for the four-colour Gauss-Seidel is approx- 
imately four times that of the point Jacobi, so the latter 

Appl. Math. Modelling, 1987, Vol. 11, October 339 



. 
Parallel finite element methods on the DAP: C. H. Lai and H. M. Liddell 

is generally preferred on the DAP. The time for the 
point Jacobi iteration is approximately equivalent to 
the block preconditioning for one degree of freedom per 
processor, i.e., about 10 ms. For the 2D plane-strain 
problem even values of m do not converge, which means 
P + Q is not positive definite (see Table 3). On the other 
hand, if p_lQ represents a point Jacobi relaxation 
method, one can always be sure that P + Q is positive 
definite for a square element with four nodes dis- 
cretisation of a 2D steady-potential-flow problem. Note 
that the number of degrees of freedom per processor is 
one in the above cases; the extension of the method for 
more than one degree of freedom per processor is cur- 
rently being investigated. 

graphics and mesh generation, error analysis tech- 
niques, investigation of methods for time-dependent and 
nonlinear problems, and the extension to complex arith- 
metic for some of the problems that occur in electro- 
magnetic theory. For much of this work the computer 
environment provided by the mini-DAP + graphics 
workstation is highly desirable. While parallel tech- 
niques for the various aspects of the problem are being 
developed, it is useful to be able to interface the DAP 
routines with the serial routines provided by the SERC 
FE library. This approach should lead to the gradual 
evolution of a fully integrated parallel computer work- 
station environment for FE calculations. 

Conclusions Acknowledgements 

The current status of the implementation of the FE 
method on the DAP has been presented. Two types of 
mapping for the problem have been adopted: long 
vector and upper leftmost storage. The authors find the 
former more flexible. There has been little development 
as yet in applying direct methods of solution to the 
sparse set of FE equations. Current development is 
based on an iterative method, namely, the precondi- 
tioned CG method. Successful preconditioners that 
have been implemented include diagonal scaling, block 
preconditioning using a nested dissection technique, 
and various relaxation (m-step) methods. 

One approach to the problem of obtaining FE soft- 
ware in the new computer environment presented by 
the highly parallel architecture is to provide a toolkit of 
parts (algorithms and subroutines) that can be used by 
other workers in the field. This has been the aim of the 
DAP FE library development work. Much remains to 
be done to complete the set of FE tools; this will 
include the development of pre- and postprocessing 
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ing Research Council under grant number GR/D/ 
59427. The authors would like to thank Dr. R. Wait for 
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