60 research outputs found

    Dysbiosis of the Intestinal Microbiota in IBS

    Get PDF

    Pelimoottorin hyödyntäminen simuloinnin visualisoinnissa

    Get PDF
    Modern game engines provide software developers with comprehensive toolsets for turning their visions into visually appealing 3D worlds. In addition to gaming industry, these frameworks can be used in creating visualizations for real-world processes. In this thesis, the concept of game engine based industrial process visualization is demonstrated in the context of automated container terminals. During the thesis project, a real-time 3D visualization tool was developed that can be used to visualize simulated terminals and actual systems. The work was commissioned by a Finnish client company, working in the cargo handling industry. The thesis document comprises of a background part and a solution part. In the background part, the most important concepts of container terminal operations are presented. The focus is then moved to the software systems that are used in the automated terminals provided by the client company. The background part contains also a review of the existing 3D applications in the container handling industry and a literature survey of various other projects, which are utilizing game engines for simulation purposes. For the practical part, a requirements analysis was performed for the visualization tool. The development platform was then chosen by comparing two of the most commonly used modern game engines: Unity and Unreal Engine. While both of the engines had their advantages and disadvantages, Unity was chosen as the development platform for several reasons: It allowed using the existing 3D models of the client company without doing any manual conversions to the files. The object model and scripting system of Unity was also regarded as intuitive and easy to use. Finally, the software framework used in Unity allowed easy integration with the software systems of the client company. The implemented application is configured by using similar XML files that are used in GUI applications of actual terminals. It communicates with the terminal automation system by using the common communication platform. Machine positions and container events are acquired real-time from the automation system. It was also proven, that the application can be extended to send messages back to the automation system. The solution was tested with a virtual container terminal, including 10,000 containers and 47 container handling machines. It was confirmed, that the application is able to handle large amount of concurrent movement without problems. However, the vast amount of objects in the terminal makes the visualization of the whole area a challenging task for a conventional PC. Further graphical optimization is required in order to provide sufficient frame rate and smooth animation in all situations

    Transcriptional analysis of oligosaccharide utilization by <em>Bifidobacterium lactis</em> Bl-04

    Get PDF
    BACKGROUND: Probiotic bifidobacteria in combination with prebiotic carbohydrates have documented positive effects on human health regarding gastrointestinal disorders and improved immunity, however the selective routes of uptake remain unknown for most candidate prebiotics. The differential transcriptomes of Bifidobacterium animalis subsp. lactis Bl-04, induced by 11 potential prebiotic oligosaccharides were analyzed to identify the genetic loci involved in the uptake and catabolism of α- and β-linked hexoses, and β-xylosides. RESULTS: The overall transcriptome was modulated dependent on the type of glycoside (galactosides, glucosides or xylosides) utilized. Carbohydrate transporters of the major facilitator superfamily (induced by gentiobiose and β-galacto-oligosaccharides (GOS)) and ATP-binding cassette (ABC) transporters (upregulated by cellobiose, GOS, isomaltose, maltotriose, melibiose, panose, raffinose, stachyose, xylobiose and β-xylo-oligosaccharides) were differentially upregulated, together with glycoside hydrolases from families 1, 2, 13, 36, 42, 43 and 77. Sequence analysis of the identified solute-binding proteins that determine the specificity of ABC transporters revealed similarities in the breadth and selectivity of prebiotic utilization by bifidobacteria. CONCLUSION: This study identified the differential gene expression for utilization of potential prebiotics highlighting the extensive capabilities of Bifidobacterium lactis Bl-04 to utilize oligosaccharides. Results provide insights into the ability of this probiotic microbe to utilize indigestible carbohydrates in the human gastrointestinal tract

    Data regarding the growth of Lactobacillus acidophilus NCFM on different carbohydrates and recombinant production of elongation factor G and pyruvate kinase

    Get PDF
    The present study describes the growth of the very well-known probiotic bacterium Lactobacillus acidophilus NCFM on different carbohydrates. Furthermore, recombinant production of putative moonlighting proteins elongation factor G and pyruvate kinase from this bacterium is described. For further and detailed interpretation of the data presented here, please see the research article “Mucin- and carbohydrate-stimulated adhesion and subproteome changes of the probiotic bacterium Lactobacillus acidophilus NCFM” (Celebioglu et al., 2017) [1]

    The Differential Proteome of the Probiotic Lactobacillus acidophilus NCFM Grown on the Potential Prebiotic Cellobiose Shows Upregulation of Two beta-Glycoside Hydrolases

    Get PDF
    Probiotics, prebiotics, and combinations thereof, that is, synbiotics, are known to exert beneficial health effects in humans; however interactions between pro- and prebiotics remain poorly understood at the molecular level. The present study describes changes in abundance of different proteins of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) when grown on the potential prebiotic cellobiose as compared to glucose. Cytosolic cell extract proteomes after harvest at late exponential phase of NCFM grown on cellobiose or glucose were analyzed by two dimensional difference gel electrophoresis (2D-DIGE) in the acidic (pH 4–7) and the alkaline (pH 6–11) regions showing a total of 136 spots to change in abundance. Proteins were identified by MS or MS/MS from 81 of these spots representing 49 unique proteins and either increasing 1.5–13.9-fold or decreasing 1.5–7.8-fold in relative abundance. Many of these proteins were associated with energy metabolism, including the cellobiose related glycoside hydrolases phospho-β-glucosidase (LBA0881) and phospho-β-galactosidase II (LBA0726). The data provide insight into the utilization of the candidate prebiotic cellobiose by the probiotic bacterium NCFM. Several of the upregulated or downregulated identified proteins associated with utilization of cellobiose indicate the presence of carbon catabolite repression and regulation of enzymes involved in carbohydrate metabolism

    The effect of selected synbiotics on microbial composition and short-chain Fatty Acid production in a model system of the human colon.

    Get PDF
    Prebiotics, probiotics and synbiotics can be used to modulate both the composition and activity of the gut microbiota and thereby potentially affecting host health beneficially. The aim of this study was to investigate the effects of eight synbiotic combinations on the composition and activity of human fecal microbiota using a four-stage semicontinuous model system of the human colon.Carbohydrates were selected by their ability to enhance growth of the probiotic bacteria Lactobacillus acidophilus NCFM (NCFM) and Bifidobacterium animalis subsp. lactis Bl-04 (Bl-04) under laboratory conditions. The most effective carbohydrates for each probiotic were further investigated, using the colonic model, for the ability to support growth of the probiotic bacteria, influence the composition of the microbiota and stimulate formation of short-chain fatty acids (SCFA).The following combinations were studied: NCFM with isomaltulose, cellobiose, raffinose and an oat β-glucan hydrolysate (OBGH) and Bl-04 with melibiose, xylobiose, raffinose and maltotriose. All carbohydrates showed capable of increasing levels of NCFM and Bl-04 during fermentations in the colonic model by 10(3)-10(4) fold and 10-10(2) fold, respectively. Also the synbiotic combinations decreased the modified ratio of Bacteroidetes/Firmicutes (calculated using qPCR results for Bacteroides-Prevotella-Porphyromonas group, Clostridium perfringens cluster I, Clostridium coccoides - Eubacterium rectale group and Clostridial cluster XIV) as well as significantly increasing SCFA levels, especially acetic and butyric acid, by three to eight fold, as compared to the controls. The decreases in the modified ratio of Bacteroidetes/Firmicutes were found to be correlated to increases in acetic and butyric acid (p=0.04 and p=0.03, respectively).The results of this study show that all synbiotic combinations investigated are able to shift the predominant bacteria and the production of SCFA of fecal microbiota in a model system of the human colon, thereby potentially being able to manipulate the microbiota in a way connected to human health
    corecore