

SAMPO LAHTINEN

UTILIZATION OF GAME ENGINE IN SIMULATION

VISUALIZATION

Master of Science thesis

Examiner: prof. Hannu Koivisto
Examiner and topic approved by the
Faculty Council of the Faculty of
Engineering Sciences on 4th May
2016

i

ABSTRACT

SAMPO LAHTINEN: Utilization of Game Engine in Simulation Visualization
Tampere University of Technology
Master of Science Thesis, 78 pages, 6 Appendix pages
November 2016
Master’s Degree Programme in Automation Engineering
Major: Information Systems in Automation
Examiner: Professor Hannu Koivisto

Keywords: game engine, visualization, simulation, container terminal

Modern game engines provide software developers with comprehensive toolsets for

turning their visions into visually appealing 3D worlds. In addition to gaming industry,

these frameworks can be used in creating visualizations for real-world processes. In this

thesis, the concept of game engine based industrial process visualization is demonstrat-

ed in the context of automated container terminals. During the thesis project, a real-time

3D visualization tool was developed that can be used to visualize simulated terminals

and actual systems. The work was commissioned by a Finnish client company, working

in the cargo handling industry.

The thesis document comprises of a background part and a solution part. In the back-

ground part, the most important concepts of container terminal operations are presented.

The focus is then moved to the software systems that are used in the automated termi-

nals provided by the client company. The background part contains also a review of the

existing 3D applications in the container handling industry and a literature survey of

various other projects, which are utilizing game engines for simulation purposes.

For the practical part, a requirements analysis was performed for the visualization tool.

The development platform was then chosen by comparing two of the most commonly

used modern game engines: Unity and Unreal Engine. While both of the engines had

their advantages and disadvantages, Unity was chosen as the development platform for

several reasons: It allowed using the existing 3D models of the client company without

doing any manual conversions to the files. The object model and scripting system of

Unity was also regarded as intuitive and easy to use. Finally, the software framework

used in Unity allowed easy integration with the software systems of the client company.

The implemented application is configured by using similar XML files that are used in

GUI applications of actual terminals. It communicates with the terminal automation

system by using the common communication platform. Machine positions and container

events are acquired real-time from the automation system. It was also proven, that the

application can be extended to send messages back to the automation system.

The solution was tested with a virtual container terminal, including 10,000 containers

and 47 container handling machines. It was confirmed, that the application is able to

handle large amount of concurrent movement without problems. However, the vast

amount of objects in the terminal makes the visualization of the whole area a challeng-

ing task for a conventional PC. Further graphical optimization is required in order to

provide sufficient frame rate and smooth animation in all situations.

ii

TIIVISTELMÄ

SAMPO LAHTINEN: Pelimoottorin hyödyntäminen simuloinnin visualisoinnissa
Tampereen teknillinen yliopisto
Diplomityö, 78 sivua, 6 liitesivua
Marraskuu 2016
Automaatiotekniikan diplomi-insinöörin tutkinto-ohjelma
Pääaine: Automaation tietotekniikka
Tarkastaja: Professori Hannu Koivisto

Avainsanat: pelimoottori, visualisointi, simulointi, konttisatama

Nykyaikaiset pelimoottorit tarjoavat ohjelmistokehittäjille kattavat työkalut visuaalisesti

näyttävien 3D-ympäristöjen luomiseen. Pelinkehityksen lisäksi näitä työkaluja voidaan

käyttää tosielämän prosessien visualisointiin. Tässä diplomityössä pelimoottorin käyttöä

teollisten prosessien visualisoinnissa on demonstroitu automaattisilla konttiterminaaleil-

la. Työssä toteutettiin reaaliaikainen 3D-visualisointityökalu, jota voidaan käyttää simu-

loitujen järjestelmien ja oikeiden terminaalien visualisointiin. Sovellus tehtiin tilaus-

työnä suomalaiselle lastinkäsittelyalalla toimivalle yritykselle.

Työ jakautuu taustaosioon ja toteutusosioon. Taustaosiossa esitellään konttiterminaalien

toimintaa yleisesti, minkä jälkeen tutustutaan asiakasyrityksen automaatiojärjestelmissä

käytettäviin ohjelmistoihin. Taustaosio sisältää lisäksi kirjallisuusselvityksen olemassa-

olevista 3D-työkaluista kontinkäsittelyalalla sekä yleisemmin projekteista, joissa peli-

moottoria on hyödynnetty simulointitarkoituksiin.

Käytännön osiossa tehtiin vaatimusmäärittely visualisointityökalulle, minkä jälkeen

toteutusympäristö valittiin vertailemalla kahta yleisesti käytettyä nykyaikaista peli-

moottoria: Unitya ja Unreal Engineä. Molempien ympäristöjen hyvistä ja huonoista

puolista huolimatta Unity osoittautui selkeästi paremmaksi valinnaksi projektin toteut-

tamiseen: Se mahdollistaa asiakasyrityksessä tehtyjen 3D mallien hyödyntämisen sel-

laisenaan ilman manuaalisesti tehtäviä tiedostomuunnoksia. Unityn käyttämä oliomalli

ja ohjelmointirajapinta koettiin vaivattomiksi käyttää verrattuna Unreal Engineen.

Lisäksi Unityn käyttämä ohjelmistoalusta mahdollisti helpon integraation asiakasyri-

tyksen järjestelmiin.

Toteutettu sovellus käyttää konfigurointiin samanlaisia XML tiedostoja, joita käytetään

todellisten konttiterminaalien valvomosovelluksissa. Se kommunikoi automaatiojärjes-

telmän kanssa käyttäen yrityksen yhteistä kommunikaatiorajapintaa. Koneiden paikka-

tiedot ja konttitapahtumat saadaan reaaliaikaisesti automaatiojärjestelmältä. Sovellusta

voidaan myös tarvittaessa laajentaa lähettämään viestejä automaatiojärjestelmän

suuntaan.

Ratkaisua testattiin virtuaalisen konttiterminaalin kanssa, joka sisälsi 10 000 konttia ja

47 kontinkäsittelykonetta. Testillä osoitettiin, että sovellus kykenee käsittelemään

ongelmitta useiden koneiden samanaikaista liikettä. Koko terminaalialueen visualisointi

osoittautui kuitenkin haasteelliseksi tehtäväksi tavalliselle PC-tietokoneelle, koska piir-

rettävien kohteiden määrä terminaalissa on erittäin suuri. Sovelluksen graafista

toimintaa tulee optimoida, jotta voidaan varmistaa riittävä kuvanopeus ja sulava ani-

maatio kaikissa tilanteissa.

iii

PREFACE

This thesis was commissioned by the Kalmar branch of Cargotec Finland Oy. I would

like to express my gratitude to Mr. Hannu Santahuhta from Kalmar for offering me the

topic. This project serves as a fascinating example of how software can be used to create

elegant solutions to real-life problems. The thesis process involved acquiring and apply-

ing knowledge of maritime container logistics, software system integration and 3D

graphics, among many other things. This project contributed greatly to my pursuit of

creating software not only for the sake of software itself but as a part of larger value

creation process.

I would also like to thank Engineering Manager Petteri Kylliäinen for supervising the

thesis project from the Kalmar side and Professor Hannu Koivisto from TUT for the

academic guidance and examination of the thesis. Developing of the application and

producing of a high-quality thesis document proved to be a surprisingly time-consuming

task. The whole process from receiving the topic to publishing the final thesis version

took almost ten months. I would like to thank all parties for their patience. I also want to

thank the whole software development team of Kalmar for their invaluable help in un-

derstanding of how the terminal software works.

The previous year has brought some of the biggest changes in my life, since I started my

studies at TUT in 2009: Returning to Finland after a year-long exchange in Germany,

seeing the old student comrades start new lives in other cities, moving from the student

role to a new challenging position in working life, and writing the final thesis. All these

events have been characterized with a feeling of letting go of the old and stepping into a

new era, filled with excitement but also with a great deal of uncertainty.

I want to thank my beloved girlfriend and my family for supporting me all the way

through this process. Special thanks go also to my friends in the student choir Teek-

karikuoro for providing the much-needed recreation and a feeling of continuity during

these turbulent times.

Tampere, 9th of November 2016

Sampo Lahtinen

iv

CONTENTS

1. INTRODUCTION .. 1

2. MARITIME CONTAINER TERMINALS .. 3

2.1 Terminal operations.. 4

2.2 Equipment and automation... 5

 Automatic stacking cranes ... 6 2.2.1

 Straddle and shuttle carriers ... 8 2.2.2

2.3 Logistics planning .. 10

3. KALMAR AUTOMATION SOFTWARE PLATFORM 12

3.1 Control System platform .. 13

3.2 Internal communication platform ... 13

3.3 GUI framework .. 15

 Coordinate mapping ... 17 3.3.1

 Configuration files ... 18 3.3.2

4. EXISTING 3D APPLICATIONS ... 20

4.1 3D tools used by Kalmar .. 20

4.2 Virtual terminal solutions by other companies .. 23

4.3 Utilization of game engines in other fields .. 25

5. REQUIREMENTS FOR THE VISUALIZATION TOOL 30

5.1 Purpose of the application .. 30

 Intended use ... 30 5.1.1

 Features to be included .. 31 5.1.2

5.2 Application environment .. 31

 Connection to the simulation environment 32 5.2.1

 Configuration data.. 32 5.2.2

5.3 Functional requirements ... 33

 High priority ... 33 5.3.1

 Medium priority ... 33 5.3.2

 Low priority ... 34 5.3.3

5.4 Non-functional requirements.. 34

5.5 Technical considerations .. 35

 Proposed architecture ... 35 5.5.1

6. CHOICE OF GAME ENGINE ... 37

6.1 Functions of a game engine .. 37

6.2 Candidates for the implementation .. 38

 Licensing .. 39 6.2.1

 Object model .. 40 6.2.2

 Modeling support ... 41 6.2.3

 Scripting system ... 42 6.2.4

 Other features ... 44 6.2.5

v

6.3 Conclusion .. 44

7. SOLUTION DETAILS ... 46

7.1 Structure of the application .. 46

 Structure of the back-end ... 47 7.1.1

 Structure of the Unity project ... 50 7.1.2

 Communication between modules ... 52 7.1.3

 Reasoning for the architecture ... 53 7.1.4

7.2 Handling of 3D objects .. 54

 Comments on the used methods... 57 7.2.1

7.3 Handling of container instances ... 58

7.4 Movement algorithm for machines .. 60

 Calculation of the animation interval ... 61 7.4.1

 Possible improvements .. 62 7.4.2

 Handling of rotations ... 62 7.4.3

8. TESTING AND EVALUATION ... 64

8.1 Performance testing .. 64

 Techniques for improving the frame rate 66 8.1.1

 CPU profiling of back-end ... 67 8.1.2

 Conclusion ... 68 8.1.3

8.2 Further development ideas ... 68

 Including interaction in the application ... 68 8.2.1

 Alternative data sources ... 69 8.2.2

 Other requirements ... 70 8.2.3

9. CONCLUSIONS ... 71

REFERENCES .. 73

APPENDIX 1: SCREENSHOTS FROM THE APPLICATION 79

vi

NOTATIONS AND ABBREVIATIONS

Boldface Term definition

Italic Reference to a program, software object, data field or file

[] Literature reference

() Cross-reference or explanation

Courier New Program code or XML data

// Begins comment line in program code

<!-- --> Marks comment in XML data

Cambria Math Mathematical variable or equation

AGV Automated Guided Vehicle

AI Artificial Intelligence

ALV Automated Lifting Vehicle

ASC Automatic Stacking Crane

ASCCS Control System for Automatic Stacking Cranes

AutoStrad Automated straddle carrier concept from Kalmar

CAD Computer-Aided Design

CAM Computer-Aided Manufacturing

CAVE Cave Automatic Virtual Environment

CHE Container Handling Equipment

CPU Central Processing Unit

CS Control System

DLL Dynamically Linked Library

EIS External Interface Service

EMS Equipment Monitoring System

FPS Frames Per Second

GPS Global Positioning System

GPU Graphics Processing Unit

GUI Graphical User Interface

HT Horizontal Transportation

HTCS Horizontal Transportation Control System

IDE Integrated Development Environment

LOD Level Of Detail

MVC Model-View-Controller, a software design pattern

.NET Software framework developed by Microsoft

PLC Programmable Logic Controller

Qt A software framework, used in creating GUI applications for vari-

ous platforms

RAM Random-Access Memory

RMG Rail Mounted Gantry crane

RTG Rubber-Tired Gantry crane

SC Straddle Carrier

STS Ship-To-Shore crane

TCP/IP Transfer Control Protocol / Internet Protocol, the standard technol-

ogy suite for implementing communication in computer networks

vii

TEU Twenty-foot Equivalent Unit

TLS Terminal Logistic System

TOS Terminal Operating System

UE Unreal Engine

UI User Interface

UniQ Communication framework used in Kalmar products

VPN Virtual Private Network

VR Virtual Reality

XML Extensible Markup Language

 1

1. INTRODUCTION

Modern game engines provide software developers with comprehensive and powerful

toolsets for converting their visions into visually appealing 3D worlds. In addition to

gaming industry, these frameworks can be used in creating visualizations for real-world

processes. 3D visualizations play an increasingly important role in the marketing of

industrial products, and the ability to provide a convincing visualization may even be-

come one of the key factors in winning or losing a customer project. Visualizations are

also used commonly together with simulations to provide better understanding of the

system that is being simulated. In today’s networked automation environments, real-

time data from the process can be used as data source for the visualization.

In this thesis, the concept of game engine based industrial process visualization is

demonstrated in the context of automated container terminals. Volume of the worldwide

container traffic has been growing steadily since the introduction of standard shipping

containers in the 1960s. While the container ships have become increasingly larger, ef-

ficiency of harbour systems has become a key success factor for container terminal op-

erators. Software and automation play a prominent role in a modern harbour, where

unmanned machines are performing concurrent moves side-by-side with the manual

operations. Integration of various subsystems calls for lots of configuration work from

the terminal automation providers. Significant advantages can be achieved by using

simulation models, which may be used in planning of new terminals and optimizing of

logistics systems in existing facilities. When the simulation models are being combined

with actual control software, entirely functional virtual terminals may be created prior to

construction of any physical terminal equipment.

Goal of the thesis project was to develop a prototype for a 3D visualization tool, which

can be used to visualize virtual container terminals. These virtual terminals consist of

simulated process models and actual control system software, which is used to control

the logistics process. They communicate with the visualization application by using the

same communication platform that is used in actual terminals. The featured container

handling machines and software systems are developed by Kalmar, which is a branch of

Cargotec Corporation. Cargotec is a Finnish company, providing intelligent cargo han-

dling solutions for a wide range of industries.

The rest of this thesis can be roughly divided into a background part and a solution part.

The background part comprises of chapters 2–4. In Chapter 2, a general introduction to

container terminals is given. The logistics process of a terminal is explained and the

most important machine types and concepts are presented. A brief overview is also giv-

 2

en of the various planning problems that may be addressed by using simulation models.

In Chapter 3 the focus is moved to software systems used in Kalmar solutions. The pre-

sented software components and communication concepts will provide the basis for the

data interchange between the visualization application and the virtual terminal process.

Chapter 4 provides an overview of existing 3D applications, including the 3D visualiza-

tion tools used by Kalmar and the virtual terminal solutions provided by other compa-

nies. The chapter contains also a literature review of the previously done simulation

projects utilizing game engines in fields outside container handling industry.

The solution part of the thesis covers the specification, design, implementation and test-

ing of the visualization tool. Requirements analysis for the application is performed in

Chapter 5. In addition to the functional requirements, certain technical aspects are dis-

cussed and a preliminary architecture is presented for the application. In Chapter 6 the

concept of game engine is covered in more detail and a comparison is made between

two of the most commonly used modern game engines: Unity and Unreal Engine. The

implemented solution is presented in Chapter 7, which describes the structure of the

application, handling of the terminal objects in 3D world and the animation system. In

Chapter 8, testing procedures are described and further development ideas are given for

the visualization tool. Final conclusions of the thesis are presented in Chapter 9.

 3

2. MARITIME CONTAINER TERMINALS

The invention and standardization of shipping containers has had a tremendous impact

on the cargo handling industry for the last half of a century. The first regular container

shipping service started in 1961 between the US East coast and ports in the Caribbean,

Central and South America. By year 2000 over 60% of all deep sea cargo in the world

was transported in containers, with containerization rate up to 100% on some routes. [1]

Today the standardized steel boxes are ubiquitous in sea, rail and road transportation of

cargo. Storage capacities and traffic volumes are commonly expressed in twenty-foot

equivalent units (TEU), where one TEU represents a 20 feet long container. Other

commonly used container lengths include 40 and 45 feet, which both measure as 2 TEU

[2]. The volume of global container traffic has been growing steadily also during the

21
st
 century: Between years 2000 and 2014 the maritime container traffic in the world

tripled from around 225 million to 680 million TEU per year. [3; 4]

Along with traffic volumes, the sizes of container ships have been growing dramatically

from several hundred TEU of the early generations to over 18.000 TEU of the largest

vessels of today [5]. Operating costs of a ship grow steeply with its size, but the ship

only generates revenue when it is moving [5; 6]. Thus, having short turnaround times in

harbours has become an increasingly important success factor for shipping lines. Com-

petition between container terminal operators has created demand for more and more

efficient port systems, allowing short waiting times and fast loading and unloading of

vessels, while keeping the operating costs moderate. [2] Computer systems and automa-

tion have become key elements in both equipment control and high level management

of a terminal. Today’s automated harbour is a complex environment where sophisticated

software systems are used for logistics planning, communication and safe and reliable

execution of concurrent movements.

Generally the term container terminal may refer to any facility where containers are

being moved from one transport method to another, e.g. from truck to train. Some mari-

time terminals may also act as pure interchange terminals, connecting major ocean lines

to regional shipping routes or inland barge transports. In this thesis the focus is on ter-

minals which have both access to road or rail network and services for marine vessels.

Section 2.1 describes the basic operations of such terminal. Commonly used container

handling equipment (CHE) types and terminal automation issues are discussed in sec-

tion 2.2. The related logistics planning problems and software systems are presented

briefly in section 2.3.

 4

2.1 Terminal operations

Container terminals vary a lot in terms of size, layout, equipment and degree of automa-

tion. While it is not possible to provide one general blueprint for a terminal, each termi-

nal can be roughly divided to certain functional areas, as illustrated in Figure 1.

Figure 1: Functional areas of a maritime container terminal. Adapted from [2].

Loading and unloading of vessels takes place next to the quay wall, in an area called

waterside or quayside. In modern terminals, the container movements between vessel

and apron are performed by a rail-mounted crane, commonly known as ship-to-shore

crane (STS). Typical STS has a fixed orientation towards the ship and it is driven side-

ways on the rails along the quay wall. The crane uses a moving trolley and hoist to pick

up the containers from the ship and ground them on the apron, and vice-versa. In termi-

nals with low container throughput, STS cranes may be replaced by traditional quay

cranes or on-board lifting equipment of vessels [6].

Containers are transported to and from waterside area by means of horizontal transpor-

tation (HT) equipment. For HT equipment there are several options, like shuttle carriers,

trailers pulled by terminal tractors, or automated guided vehicles (AGV). Some of these

are able to pick and ground containers by themselves, while trailers and AGVs are de-

pendent on a crane to do the loading and unloading for them.

Storage yard is used for stocking incoming containers before they are transported on-

wards. Containers are typically organized in stacks, which may have different heights

and shapes. Stack positions are commonly expressed in terms of row, bay and tier, rep-

resenting the logical position of the container in three dimensions. In addition to stacks,

the yard may have a separate area for storing empty containers and sheds for temporary

storing of goods.

 5

Serving of trucks and trains takes place in the landside area, also known as hinterland

area. Separate equipment may be required for transporting containers between the stor-

age yard and landside, and for loading and unloading of vehicles.

One possible operational scheme for a container terminal is presented in Figure 2. In the

given terminal, rail mounted gantry cranes (RMG) are used for stacking containers in

the yard area. HT equipment is utilized in both ends of the chain and separate gantry

cranes are used for serving trucks and trains.

Figure 2: Operational scheme example for a container terminal [2]

2.2 Equipment and automation

The most commonly used CHE types include ship-to-shore cranes, rail mounted and

rubber-tired gantry cranes, shuttle and straddle carriers, terminal tractors, reach stackers

and masted container handlers. [7]. Many of these are available as fully or partially au-

tomated versions. An automated rail mounted gantry crane is commonly known as au-

tomatic stacking crane (ASC). Unmanned versions of the straddle and shuttle carriers

are sometimes referred to as automated lifting vehicles (ALV), whereas a driverless

chassis without lifting capabilities is called automated guided vehicle (AGV).

The choice of equipment for a terminal depends on several factors, including planned

terminal capacity, planned container throughput and possible space restrictions. Term

stacking density is used to measure the utilization of land area, commonly expressed as

TEU per hectare. In sparsely built terminals, containers may be stored on chasses in-

stead of stacking them on top of each other [2]. While this system can work on relative-

ly inexpensive equipment, it requires lots of space, resulting in low stacking density. A

medium-density solution is achieved by using straddle carriers or reach stackers, which

are able to stack the containers up to 3–4 tiers high. In medium-sized to large terminals,

straddle carriers may be used as the only CHE type besides the STS, as is demonstrated

in Figure 3. In this system, containers are stored in linear stacks, with gaps between

rows to allow straddle carriers to reach the inner containers of the stack. [6]

 6

Figure 3: Example of “pure SC” system, utilizing straddle carriers for stacking, hori-

zontal transportation and landside operations [6]

The highest stacking density and container throughput is achieved with gantry cranes.

Gantry cranes stack the containers in tightly organized blocks, consisting of 7–8 tiers at

most. Rubber-tired gantry cranes (RTG) are able to navigate between multiple blocks,

whereas an RMG can operate in a single block with up to 12 rows of containers. A

stacking system based on RMGs is relatively expensive to deploy and rigid in terms of

terminal layout changes. On the other hand, it provides the best land area utilization and

highest productivity for large and very large terminals. [6]

The appropriate degree of automation for a terminal depends e.g. on the planned con-

tainer throughput and labor costs of the region. According to estimates by Kalmar, in

highly developed western countries the cost of labor can account to more than 50% of

the total operating costs [8]. Manual operations are also prone to human errors, resulting

in accidents, mistakes, and losing of containers. A fully automated system – consisting

of unmanned CHE – has high initial costs due to special requirements for the terminal

infrastructure and the required control systems. Thus, it is often not feasible choice for

small or medium-sized terminals. Partially automated systems can be used to increase

productivity in manual terminals, e.g. by assisting CHE drivers in their work and

providing the operators in the control room with comprehensive data about the situation

in the terminal.

Later in this thesis, a control software framework and visualization model is presented

for automatic stacking cranes and straddle carriers. Their physical features and working

principles are described in the following sections.

2.2.1 Automatic stacking cranes

Automatic stacking crane (ASC) is a Kalmar brand name for fully automated rail

mounted gantry crane systems. Typical ASC block is situated perpendicular to the quay

wall, with one end next to the landside and other next to the waterside. There are usually

two or three cranes per block (see Figure 4). In two-crane configuration the both cranes

operate on same rails and cannot pass each other. The three-crane configuration has one

 7

larger crane operating on a separate set of rails. This larger crane is able to pass both

smaller cranes, allowing more concurrent movements in the block. The three-crane sys-

tem is however more costly due to the extra crane and the required rail installations. [8]

Figure 4: a) 3D model of two ASC blocks with two cranes per stack. b) Ditto with three

cranes per stack. [8]

Both ends of an ASC block have interchange areas for other equipment. The landside

interchange area is typically organized in truck lanes, where road trucks are served di-

rectly by an ASC crane. Incoming trucks are identified by using light gates and auto-

matic measurement systems. Picking and grounding of containers is performed semi-

automatically by using so called truck driver kiosks for passing orders to the crane.

The waterside interchange area has lanes for HT equipment. ASCs are usually com-

bined with shuttle or straddle carriers, which are able to pick and ground containers in-

dependently. Thus the ASC crane may leave the container in the interchange area,

where it is later picked by another CHE, or vice versa. During quiet times the ASC

cranes are used to move and sort the existing containers in the stack to enable shortest

possible performance times for the upcoming tasks.

An ASC crane consists of a gantry, a trolley, a hoist and a spreader. The gantry repre-

sents the rigid frame structure of the crane, which moves linearly on the rails. The trol-

ley moves perpendicular to the gantry, allowing transitions between rows. Hoist is used

for moving the spreader up and down. Thus, the positions of gantry, trolley and hoist

represent the three degrees of freedom in the ASC block.

The spreader is used for lifting the containers. Typical telescopic spreader consists of a

rigid main body and two retractable end components, which are moved to make the

spreader length match the container. Figure 5 shows a close-up view of a spreader.

Containers are attached to the spreader by using twistlocks. Each corner of a container

has a fitting, which allows a twistlock to be inserted in a certain position. The twistlocks

are then turned to lock the container securely to the spreader. Similar twistlock systems

are used in ships, trains and truck trailers to hold the containers in place during transpor-

tation.

 8

Figure 5: Close-up view of a spreader, with ASC cranes in background [9]

Spreaders are used in nearly all CHE types that are able to do independent lifting. Some

spreaders are able to pick two 20 feet containers simultaneously, which is known as

twin-lifting. These spreaders have an extra set of twistlocks in the middle to grasp the

inner corners of the two containers. Some terminals use double spreaders, which allow

side-by-side lifting of two 40 – 45 feet containers, known as tandem lifting [5]. Fur-

thermore, some RMG systems have rotating spreaders, which allow picking of contain-

ers in different angles and loading them on the train with doors facing each other [10].

These special spreader types are however not common in ASC cranes.

2.2.2 Straddle and shuttle carriers

Straddle carrier (SC, or a straddle) is a freely moving CHE type, which has a wheel

span slightly wider than a single container. Its hoist is fixed to its main structure and

cannot be moved sideways like in gantry cranes. Thus, an SC is only able to drive over

individual rows of containers and handle them from above. Typical SC has a maximum

stacking capability of 1-over-3, meaning that it is able to drive above 3 tiers of contain-

ers while carrying one [6].

Shuttle carrier (shuttle) is basically a 1-over-1 SC, designed for fast horizontal transpor-

tation. While SCs can be used for stacking (as illustrated earlier in Figure 3) shuttles

may only operate in single-tier rows, where all containers lie on the ground level. Typi-

cal ASC terminal by Kalmar uses shuttles for transporting containers between the ASC

 9

block and the working area of the corresponding STS. Kalmar shuttle carriers are also

capable of twin lifting [11].

In a paper from J. Pirhonen, a comparison is made between an ASC and shuttle based

container handling system and a more traditional concept, which is using RTGs and

terminal tractors. The simulated shuttle system uses equipment pooling, where any of

the automated shuttles can be assigned to any task, when it becomes available. Accord-

ing to Pirhonen, the shuttle concept requires less than 50% of the transport equipment

when comparing to traditional systems utilizing AGVs or terminal tractors. As the latter

are not capable of independent lifting, they may spend over 50% of their total working

cycle waiting for a crane to perform a lift or ground operation for them. The system

based on ASCs and automated shuttles is also told to produce less emissions and require

far less operating staff than a system based on manual equipment. [8]

Figure 6 below shows an automatic straddle carrier at TraPac terminal in Los Angeles,

USA. The featured terminal uses both ASCs and automatic straddle carriers for stack-

ing, and the straddles also act as horizontal transportation vehicles, serving both stack

types [12]. A container handling system consisting of ASC cranes and automated shut-

tles or straddles is used as an example case throughout the rest of this thesis. The soft-

ware framework for controlling these machines is presented later in Chapter 3.

Figure 6: Automatic straddle carrier at TraPac terminal in Los Angeles, USA [9]

 10

2.3 Logistics planning

Managing a modern container terminal is a very complicated task due to the strict per-

formance requirements and the large amount of concurrent operations to be handled.

Long-term planning of operations requires cooperation and data exchange between ter-

minal operators, shipping lines and landside transport companies. Position of each con-

tainer should be known to the operators from the moment it enters the terminal area

until the point it leaves in a ship, train or truck. Furthermore, the equipment in the ter-

minal should be utilized in such manner, that waiting times and logistics related costs

are minimized for all parties.

Operational planning in a container terminal can be divided to several processes:

 Berth allocation: For each arriving vessel, a quay position needs to be allocat-

ed so that the ship can be served as quickly as possible. The berthing schedule is

normally planned weeks in advance, but the system should be able to tolerate

sudden changes, e.g. due to ship delays. In an optimal solution, the transport

distances for incoming and outgoing containers are minimized for all vessels.

[2; 13]

 Stowage planning: Stowage plan defines the positions of containers in a ship.

The initial planning is done by the shipping company, while deciding the

schedule for a voyage. Container slots in the vessel are assigned according to

containers’ properties and their destination ports. The resulting initial plan is

sent to terminal operators, who use it to create the loading and unloading plan

for the actual containers. Ultimate goal of stowage planning is to maximize the

ship’s utilization and minimize extra container moves in the port while main-

taining the stability of the ship. [2; 13]

 Crane allocation: For each vessel, a certain number of STS cranes are assigned

and the planned container moves are scheduled to them. The chosen cranes

must be able to reach the given quay position and work with the given ship, tak-

ing into account the size of the crane. The choice of cranes for one ship affects

not only that vessel but the overall traffic situation in the terminal, as the chosen

cranes cannot be used to serve other vessels. [2; 13]

 Storage and stacking logistics: This process covers the reservation of yard ca-

pacity and choice of storage positions for the containers. In the ideal case, the

containers should be positioned so that the need for repositioning or stack re-

shuffling is minimized. The chosen storage slots should also lie relatively close

to the berthing position of the corresponding ship. In practice, the containers of-

ten arrive at the terminal lacking accurate data about the onward transportation

method or other details. Due to the amount of uncertainty in the process, a good

stacking strategy and forecasting methods are required for successful operation.

[2; 13]

 11

 Transport optimization: The task of transport optimization can be divided to

optimization of horizontal transportation and optimization of stacking opera-

tions. The former can be divided further to landside and waterside transporta-

tion, if HT equipment is utilized in both areas. General goals of the optimization

include maximizing CHE productivity and minimizing waiting times for all par-

ties. Increasing the number of CHE may have a negative effect to the terminal

efficiency, as it increases the congestion in the terminal. Intelligent job alloca-

tion and CHE routing are often more efficient and economical methods. [2]

 Landside operations planning: Landside operations concern the service of

trains and road trucks. The planning tasks include the allocation of rail tracks

and truck positions, and assignment of the container moves to the related CHE.

While the planning problems are similar to those in ship operations, the land-

side operations are usually less critical, as containers are not stacked on vehi-

cles, and waiting delays are usually more acceptable. The planning horizon is

also shorter than in seaside operations: Truck operations are often not planned

until the truck arrives at the landside area. [13]

 Workforce planning: Workforce planning covers the determination of overall

workforce capacity for the terminal and the scheduling of individual labor tasks

to employees [13]. Even in fully automated terminals, skilled operators are re-

quired for keeping the operations running. STS cranes and supporting CHE

types are typically operated by drivers. Some special containers types are also

handled manually by employees. These include the refrigerated “reefer” con-

tainers, which are stored in designated racks and connected to electric supply.

When looking at the range of planning problems, along with the questions considering

terminal layout and choice of equipment, the need for simulation technologies becomes

obvious. Furthermore, the vast amount of process data makes computerized control sys-

tem a necessity for a terminal to succeed. In large terminals, the number of container

movements per day exceeds 10.000 [2]. Thus, the planning systems must accommodate

to the constantly changing situation in the terminal.

In automated terminals, the logistics planning and administrative functions are bundled

in a business system known as Terminal Operating System (TOS). Typical functions of

a TOS include handling of the discussed planning processes, reporting, invoicing, doc-

ument management, gate control, messaging, etc. An advanced TOS can be configured

to schedule container moves automatically according to its optimization logic and the

defined business rules. Some of the modern terminal operating systems include N4 by

Navis, Master Terminal by Jade Software, and TOPS by RBS. [14-16]

While TOS is the system mainly responsible for the logistics process and financial func-

tions of a terminal, separate automation systems are typically required for the monitor-

ing of equipment and execution of operations ordered by TOS. The integrated solution

by Kalmar is presented in the following chapter.

 12

3. KALMAR AUTOMATION SOFTWARE PLAT-

FORM

The terminal automation solution provided by Kalmar is known as Terminal Logistic

System (TLS). TLS is a distributed solution, which in practice consists of several soft-

ware systems, performing various tasks. An example of TLS software stack, tailored for

ASCs and automatic straddle carriers, is presented in Figure 7.

Figure 7: Kalmar TLS software stack for automatic stacking cranes and straddle

carriers. Adapted from [17].

TLS is designed to be combinable with any TOS. Decoupling of TLS components from

third party applications is performed in External Interface Service (EIS) platform. Ter-

minal specific integration modules are encapsulated in the EIS layer, and other TLS

applications only depend on the services of EIS. Thus, the internal data structures of

TLS can be kept unchanged from project to project.

Execution of automated operations results from cooperation between the on-board au-

tomation systems of the CHE and the various control systems running on server com-

puters. The most important parts concerning the 3D visualization tool are the control

systems built on Control System platform, the internal communication framework

known as UniQ, and the existing UI applications implemented on GUI framework. The

rest of this chapter is organized in three sections, describing each of these concepts.

GUI FrameworkControl System platform

TOS (Terminal Operating System)

EIS (External Interface Service)

Internal Communication platform (UniQ)

ASCCS HTCS
Fleetview EMS

ASCs
(Automatic

Stacking Crane)

Auto SCs
(Automatic

straddles /

shuttles)

Access Control Framework

Access Control

Systems

 13

3.1 Control System platform

Control System (CS) platform provides the software components, that are used to con-

trol a single machine or (more typically) a group for machines. It can be thought as an

executive layer between the TOS and the machine-level automation systems of CHE.

Typical ASC terminal has multiple ASC Control Systems (ASCCS) installed, while the

horizontal transportation is organized under one Horizontal Transportation Control sys-

tem (HTCS), which controls all HT equipment in the terminal.

A CS is responsible for converting the work orders from the TOS into specific instruc-

tions for the CHE under its control. One of its main tasks is to prevent collisions and

deadlock situations resulting from multiple CHE trying to access the same area [10].

Before a machine is allowed to move, its CS makes a routing decision and space reser-

vation in cooperation with other control systems. Space reservations are used to ensure

that each machine has the necessary space to perform its operation, and no-one else has

the same space. Separate access control systems are used to secure areas, where humans

or manual equipment may enter the automated zone. Such areas include service gates,

truck lanes, and interchange areas, where containers are transferred between automatic

and manual equipment. [17]

Each CS has an internal world model, which describes the containers, stack positions,

obstacles and different zones in its operational area. Some of this information is speci-

fied in configuration files, but the situation may also change dynamically e.g. due to

maintenance work performed in certain areas of the terminal. [17] Information of the

handled containers is stored in the database of the corresponding CS. This causes spe-

cial situations in interchange areas, which belong to the operational area of two or more

control systems: A container lying in the interchange area of two systems has a data

representation in both systems.

Control systems monitor the status of their respective CHE and store it in a dedicated

data structure on the server [18]. This server-side data can be used for fetching and vis-

ualizing the CHE status instead of connecting to the physical machine. This is especial-

ly useful in simulated systems, where the physical machines are replaced with simula-

tion models. These so called simulation stubs are included in ASCCS and HTCS to al-

low easy building of test scenarios in virtualized server environments.

3.2 Internal communication platform

The internal communication platform – known as UniQ – acts as a cross-platform data

distribution layer, which provides a common way of communication between TLS ap-

plications. UniQ framework implements a standardized and highly reliable messaging

service, which is based on common data semantics. [17] It is also a highly modular and

 14

customizable system, where new services can be added without changing the configura-

tion of the existing system [19].

UniQ networks consist of independent service instances called peers. Each peer is able

to act as publisher or consumer of data. Peers communicate by creating a communica-

tion channel, which is a virtual two-way connection between the two peers. After the

channel is created, peers can send messages to other peers or order messages from the

other peers. In order to create a channel, the creating peer has to know the name of the

remote peer. [19]

The data that is exchanged in the UniQ framework is organized under a common nam-

ing system, known as tagging. The term tag stands for the type of a message and tagged

item refers to the actual data content of the message. Each tag has a name, description,

and further metadata associated to it. This information cannot however be sent along

with the tagged items due to network bandwidth restrictions. To overcome this problem,

all the known tags are enumerated and only the corresponding identification numbers

are delivered with the tagged items. Tag metadata is synchronized globally in a configu-

ration file known as tag map. [20] Program 1 presents an example of one tag in tag-

map.xml, describing position information for a crane.

<?xml version="1.0" encoding="UTF-8"?>

<tagmap>

 <tag id="315035">

 <name>CRANE.POSITION.X</name>

 <desc>Local X-position of the crane</desc>

 <quantity>length</quantity>

 <unit>mm</unit>

 <struct>uint</struct>

 </tag>

</tagmap>

Program 1: Example of tagmap.xml, containing information for one tag

In addition to the tags, UniQ framework defines alarms and events, which can be sent

from different actions. Delivery of alarms and events involves no data content, that is,

only the necessary identification information is sent [20]. Descriptions of known alarms

and events are defined in alarmlist.xml and eventlist.xml respectively [19].

UniQ messaging is implemented by a cross-platform software component known as tag

facade. Tag facade is written with Qt and implemented as a dynamically linked library

(DLL). Its responsibilities include the validation and interpretation of messages accord-

ing to the configuration files, establishing of communication channels between peers

and handling of the communication through the lower layers of the UniQ communica-

tion stack. [20]

The data distribution protocol of UniQ is based on group communication system pro-

vided by the Spread Toolkit. Spread Toolkit is an open source software package,

 15

providing reliable and scalable messaging services for distributed network applications

[21]. Spread implements a daemon-client model, where message distribution, ordering

and group memberships are handled by server processes known as daemons. Client ap-

plications connect to the daemons, which act as message brokers between clients. Estab-

lishing of a UniQ channel requires a daemon that is accessible to both peers. Thus, the

network location of the daemon needs to be known, when setting up UniQ communica-

tion. [17]

3.3 GUI framework

The GUI framework consists of platform independent user interface (UI) components

and a common back-end that is used to establish UniQ communication for the GUI ap-

plications. The GUI components are implemented by using Qt framework and C++ as

the primary programming language. Due to the cross-platform nature of Qt, the same

graphical widgets may be used to build monitoring applications for the control room

operators and on-board touchscreen solutions for the CHE drivers.

An application for monitoring the state of a single CHE unit is called Equipment Moni-

toring System (EMS). EMS applications are commonly installed in on-board computers

of the respective CHE and they use UniQ to communicate with the automation systems

of the vehicle. EMS can also be installed on control room computers to allow remote

monitoring of CHE.

A control room application named Fleetview combines EMS functions with a compre-

hensive 2D view of the terminal area. Figure 8 shows an example of a terminal over-

view in Fleetview. A machine view of an individual ASC crane is shown in Figure 9. In

addition to these views, Fleetview offers several operational views, which describe the

traffic situation in the terminal in more detail. The views are updated according to the

tagged data from the UniQ platform and the movements of the machines are animated at

a rate resembling real-time motion. Besides monitoring, the application can be used for

sending commands and creating work orders for equipment, allowing semi-manual op-

erations for automated terminals.

Fleetview implements effectively in 2D many of the features that are expected from the

3D visualization tool. Thus, it is used as a reference solution for the specification, de-

sign and testing of the 3D application later in this thesis. In the following sections, a

closer look is taken into some important aspects of the GUI implementation.

 16

Figure 8: Terminal overview from Fleetview

Figure 9: Machine view of an ASC crane in Fleetview

 17

3.3.1 Coordinate mapping

In order to visualize objects in their correct positions, the GUI needs a common locali-

zation system that can be applied to all objects in the terminal. Automated vehicles are

commonly equipped with GPS systems and different kinds of sensors to keep track of

the machine’s location and heading. Vehicles can also be tracked by using optical sys-

tems like laser scanners. The location information obtained from these devices is how-

ever rarely used in terminals as such. Most automated terminals have a coordinate sys-

tem, which has its origin tied to a corner of the terminal area, or some other fixed loca-

tion. [10] This terminal-wide coordinate system will be further on referred to as terminal

coordinates or global coordinates.

An object’s position in the terminal is defined by its distance from the global origin

along X- and Y-axes. An object’s heading is defined as the angle between the object’s

X-axis and the global X-axis.

Control systems use their own internal coordinates, which may differ from the terminal

coordinates in terms of origin and directions of the coordinate axes. Figure 10 illustrates

this situation for two ASC blocks. The X-axis of each block runs along the gantry direc-

tion of the ASC cranes, whereas the Y-axis represents the trolley direction. One of the

blocks has its trolley direction mirrored, which results in flipping of the Y-axis to the

opposite direction.

Figure 10: Relationship of ASC block coordinates to the terminal coordinates

x

y

Terminal Coordinates

ASC block coordinates

ASC block coordinates (mirrored)

y

y

x

x

Container stack

positions
(x, y)

(0, 0)

α

 18

Let (𝑥𝑏𝑙𝑜𝑐𝑘, 𝑦𝑏𝑙𝑜𝑐𝑘) denote the origin of a non-mirrored ASC block. Assuming that both

coordinate systems use similar units, the position of a crane (𝑥𝑐𝑟𝑎𝑛𝑒, 𝑦𝑐𝑟𝑎𝑛𝑒) is given in

terminal coordinates by

{
𝑥𝑐𝑟𝑎𝑛𝑒_𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑥𝑏𝑙𝑜𝑐𝑘 + (𝑥𝑐𝑟𝑎𝑛𝑒 ∗ cos 𝛼 − 𝑦𝑐𝑟𝑎𝑛𝑒 ∗ sin 𝛼)

 𝑦𝑐𝑟𝑎𝑛𝑒_𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑦𝑏𝑙𝑜𝑐𝑘 + (𝑥
𝑐𝑟𝑎𝑛𝑒

∗ sin 𝛼 + 𝑦𝑐𝑟𝑎𝑛𝑒 ∗ cos 𝛼) ,
 (1)

where 𝛼 is the angle between the global and local X-axes. Calculations like this are per-

formed also, when the container stack positions are converted into terminal coordinates.

For HT equipment the situation is simpler, as the HTCS typically uses terminal coordi-

nates without variations.

3.3.2 Configuration files

Fleetview uses several own file types for configuration. The most important ones con-

sidering the 3D visualization tool are terminal_layout.xml and machines.xml.

Program 2 presents a simplified example of terminal_layout.xml. This file type is used

to describe the static terminal layout to the application. The example layout contains a

water area and a building, which are defined as polygons. The fence and the gate are

defined as linear structures, limited by two end points. Other objects commonly listed in

terminal_layout.xml include rails, light poles, truck lanes, traffic lights, truck driver ki-

osks and various labels that are used to mark certain areas in the map.

<?xml version="1.0" encoding="UTF-8"?>
<Terminal width="2000" height="1000" >
 <Sea points="1000,800 1000,1000 2000,1000 2000,800"/>
 <Fence points="100,100 100,900"/>
 <Gate id="EXAMPLE_GATE" points="100,500 100,508" />
 <Building points="200,400 200,406 206,406 206,400"

text="Example Building" />
</Terminal>

Program 2: Example of terminal_layout.xml

The machines and control systems of the terminal are listed in machines.xml. An exam-

ple of the file syntax is given in in Program 3. The example script describes one ASC

block with two cranes and one straddle carrier controlled by a HTCS.

The machine nodes of the example contain following attributes:

 name specifies the name for the machine, which is shown to the user. The nam-

ing system varies from terminal to terminal.

 peerName specifies the UniQ peer name of the machine. It is used for establish-

ing communication between the application and the actual CHE. This attribute is

made separate from name to maintain standardized naming convention between

TLS applications.

 19

 controlPeerName links the machine to the corresponding control system. This

information is used e.g. in coordinate mapping.

 type specifies the type of the machine. This information is used not only for vis-

ualization but also for creating the corresponding data structures in the back-end.

 For the ASCCS, a block coordinate system is defined, like demonstrated in the

previous section. The heading attribute defines the direction of the local X-axis,

whereas the Y-direction is specified according to the mirrored attribute. The size

of the cranes is given by railWidth attribute.

 ASC cranes have their own mirrored attribute, which defines the orientation of

the crane on the rails. Initial position of the crane is given in maintenancePosi-

tion attribute, which is given in local coordinates.

 The SC has a zero position and default heading, which are used for setting initial

position for the visualized machine.

<?xml version="1.0" encoding="UTF-8"?>
<machines>
 <machine name="HTCS" peerName="HTCSM" type="HTCS"/>
 <machine name="SC001" peerName="SC001M" type="Straddle"

controlPeerName="HTCSM" zeroPos="0,0" heading="90"/>
 <machine name="ASCCS001" type="ASCCS" blockName="B001"

zeroPos="700,300" heading="180"
mirrored="true" railWidth="25.603"/>

 <machine name="ASC001W" peerName="ASC001WM" type="ASC"
mirrored="true" controlPeerName="ASCCS001"
maintenancePosition="300,0"/>

 <machine name="ASC001L" peerName="ASC001LM" type="ASC"
mirrored="true" controlPeerName="ASCCS001"
maintenancePosition="10,0"/>

</machines>

Program 3: Example of machines.xml

The configuration files are parsed during startup of Fleetview and the 2D view is initial-

ized according to the data. A tag facade is initialized in the back-end and a connection is

established to a Spread daemon, whose address is specified in another configuration

file. UniQ channels are established between Fleetview and the peers listed in ma-

chines.xml. Finally, tags, alarms and events are requested from the remote peers. When

ordering frequently changing tags, such as CHE positions, the amount of transferred

items per second is limited to avoid excessive CPU and network usage.

The presented concepts of UniQ communication, data tagging and XML configuration

files represent the input data and communication interfaces for the 3D visualization tool.

The implemented application should work analogously to Fleetview, taking into account

the requirements arising from the three-dimensional view. These include the visualiza-

tion of objects’ height and animation of movements in three dimensions. The formal

requirements analysis for the application is performed in Chapter 5. Before discussing

the requirements, an overview of existing 3D applications is given in the following

chapter.

 20

4. EXISTING 3D APPLICATIONS

In this chapter, a selection of existing 3D applications is presented in order to get an

overview of what has been implemented so far and what such tools can accomplish. The

first subchapter presents the 3D tools used in Kalmar, including the existing simulators.

In the second subchapter, virtual container terminal solutions by other companies are

discussed. In the third subchapter the focus is moved from the application domain to the

use of game engine as the implementing technology. A literature review is performed of

previously done projects that use game engines for simulation and/or interaction with

real-world processes.

4.1 3D tools used by Kalmar

Various software tools have been used by Kalmar to simulate operations of machines

since the middle of 1990s. The first applications to provide 3D animations were CAD

and FEM (Finite Element Method) systems. These tools were – and still are – used to

visualize parts and assemblies. In the 2000s more advanced tools were introduced,

which feature multi-body dynamics simulation. These tools provide the possibility to

simulate behaviour of complex machine systems off-line, i.e. the calculation doesn’t

happen in real-time but the results may be replayed at any desired speed. [22]

The next step in the evolution of simulation systems were the real-time machine simula-

tors, which allow visualization of machine behaviour from various perspectives, e.g.

from the viewpoints of driver and external viewer, parallel to the simulation. These sys-

tems also allow including actual control software and/or hardware in the simulation,

which makes them important tools for product development projects. The visualization

tools for creating the 3D view are usually included in the simulator software. [22]

One example of real-time machine simulators is the straddle carrier simulator, which is

illustrated in Figure 11. The system replicates a physical driver’s cabin of a SC that is

working in a virtual terminal. The 3D environment is visualized on 6 screens around the

driver, and the cabin mock-up is mounted on a motion platform for improved immer-

sion. Another example is the RTG simulator, which is illustrated in Figure 12. The vir-

tual RTG crane is operated via a remote control table, which is similar to ones used in

actual terminals. The system visualizes the crane from various angles and has an on-

board EMS-application running on a separate screen. Both of the mentioned systems

utilize actual control algorithms, actual control hardware, UniQ communication and

GUI components, whereas the 3D visualization is generated by the software of the sim-

ulator system provider.

 21

Figure 11: Straddle carrier simulator at Kalmar Technology and Competence Center,

Tampere [23]

Figure 12: Operating of an RTG simulator via a remote control table [23]

 22

In recent years, the development has led to using of game engines for visualizing simu-

lations of larger systems. Game engine based visualizations have already been created

for terminal productivity simulations. These simulations use simplified control algo-

rithms, which mimic the behaviour of TOS and other control systems. [22]

Another emerging area, where game engines have a significant role, is the virtual reality

(VR) applications. These applications include a head-mounted display, which allows the

user to be fully immersed into the 3D world, moving and rotating the view according to

the user’s head position. In Kalmar, experiments have been done of using Unity game

engine to create virtual terminal environments for Oculus Rift headsets. [22]

In addition to simulators, 3D technologies have already been utilized to some extent in

GUI development. UI application named DreamPort provides a complete set of tools for

monitoring and operating a terminal that uses automated straddle carriers (AutoStrad)

for container handling. The 3D GUI connects directly to the real-time control system of

the AutoStrad platform, used SC terminals, which don’t have the whole TLS software

stack installed. [17; 24] Figure 13 shows an overview of a terminal area in DreamPort.

SC operation is illustrated in more detail in Figure 14.

Figure 13: Terminal overview from DreamPort [24]

DreamPort features a fully navigable 3D view of terminal area, along with containers

and machines, whose statuses are updated in real-time. Various colour coding systems

can be applied to objects e.g. to highlight straddles that are working for certain STS or

 23

to colour the containers according to their estimated departure times. Various other

views are provided for terminal supervision and managing tasks. [24]

Since using of DreamPort is restricted to AutoStrad terminals with a certain type of con-

trol system, it cannot be considered as a complete 3D substitute of Fleetview. The latter

is built on generic GUI framework and it bases its functionality on UniQ communica-

tion instead of being tied to a certain control system. That makes Fleetview more versa-

tile in visualizing different types of terminals, albeit only in 2D.

Figure 14: Straddle carrier operation visualized in DreamPort [24]

4.2 Virtual terminal solutions by other companies

Applications that allow 3D visualization and/or simulation of functional terminals have

already been developed by several companies besides Kalmar. These companies are

typically not providing physical harbor equipment themselves, but they have focus on

container terminal software or simulation tools in general.

FlexTerm is container terminal simulation software built on FlexSim simulation engine.

It can be used for modeling, visualizing and analyzing a whole terminal or a single ac-

tivity, like gate operation. FlexTerm library provides ready-made 3D models for all

common CHE types, vehicles, vessels and fixed structures like rail tracks. Results of the

simulations can be analyzed graphically through 3D animation, and through statistical

reports and graphs. The software can be used for all the planning activities described

earlier in Chapter 2. [25; 26]

Terminal View by Tideworks is a comprehensive toolset for on-line visualization of

terminal operations. It features a freely navigable 3D view of the terminal area, based on

realistic models of containers, vessels and CHE. In addition to real-time visualization of

operations, the GUI provides search tools for easy location of a certain container or

CHE. Color coding and filtering can be used e.g. to find containers holding hazardous

 24

materials or to find equipment, containers and stack positions associated with certain

operation. In addition to the general 3D view, the application provides several opera-

tional views and analysis tools for reviewing the situation in the terminal. [27] Since

2013 Terminal View has been separated from the TOS and other control applications

provided by Tideworks. The application provides visualization for data that is obtained

from external systems, which may include third party applications. The 3D view is cre-

ated by using a graphics engine from the gaming industry. [28] Technical details of the

visualization are however not revealed by the company.

The CHESSCON software suite by ISL Applications provides a range of tools for plan-

ning, simulation and visualization of terminals. CHESSCON Terminal View is a plan-

ning application, which allows easy creation of 3D terminal models from layout draw-

ings, which are created in 2D editor. The application provides a library of 3D objects,

which can be used alongside user-imported 3D models. CHESSCON Yard View is an

operational tool for storage yard planning. The application communicates with TOS and

generates a real-time 3D view of the container inventory, which can be filtered accord-

ing to user preferences. [29] CHESSCON Virtual Terminal is a terminal emulator,

which can be combined with an existing TOS and further software systems to create a

virtual copy of an existing or not yet implemented terminal. The application contains an

internal logic for handling the equipment and it provides emulation models for the most

common CHE types. Using of external CHE emulators and 3D models is also possible.

The application generates 3D animation of the terminal events, which can be played at

any speed. Further views are provided for on-line monitoring and off-line evaluation of

operations. [30] In addition to the mentioned tools, the CHESSCON suite includes three

further applications for various simulation and planning tasks of a terminal. [29]

The Netherlands based company TBA provides control systems for automated container

terminals, along with simulation tools and consulting services. TBA’s CONTROLS

(CONtainer TeRminal Optimised Logistic Simulation) is a virtual terminal application

designed to be used with actual TOS. The software emulates the control systems and

physical processes of a terminal, which is realized by using internal simulation models.

While using CONTROLS, the TOS can be configured and tested and operators can be

trained without affecting the real operations. The application provides detailed 3D visu-

alization of the operations, which can also be replayed when desired. [31] The visualiza-

tion component used in CONTROLS was developed using Ogre3D, which is an open

source game engine based on C++. The application uses a database for storing the

events, which allows for replaying the events or viewing them on a remote computer.

[32]

Another interesting concept by TBA is the Safe-T Game, which allows the users to be

immersed in the virtual terminal as game characters. The game system utilizes TBA’s

equipment control system TEAMS, which is running live operations on actual CHE.

The virtual representation of the terminal is created by CONTROLS software, which

 25

replicates the events of the actual terminal in the game world. The players move in the

terminal in the roles of dispatchers or maintenance technicians, facing various scenarios.

For the visualization, Oculus Rift headsets may be used instead of conventional com-

puter displays to achieve highest possible level of realism. The game allows training of

personnel based on actual situations in the terminal, thus raising the general awareness

of the risks in the automated terminal environment. [33; 34]

A few further papers have been published about virtual terminal applications, which are

not directly linked to any of the previously mentioned commercial products. Lau et al.

[35] describe a design for a distributed real-time training environment, which consists of

a STS simulator and a simulated control tower. The crane cabin simulation is running in

a CAVE (Cave Automatic Virtual Environment) like environment, where the view is

projected on multiple screens around the user. The control tower operator is supposed to

give instructions to the crane operator according to the loading plan, which is visible in

the control tower UI. The movement of the crane is in turn visualized in the control

tower view, allowing realistic cooperation between the operators.

Bruzzone et al. [36] describe design processes of a straddle carrier simulator and a truck

simulator, which can be used for training purposes. A virtual terminal environment is

created based on an actual major terminal in southern Italy. Several technologies and

modeling tools are utilized in the project, including 3D Studio Max for physical model-

ing of objects, Microsoft Visual C++ for simulating the behaviour of the straddle carri-

er, Quest 3D for implementing the truck simulation and Vega Prime for visualizing the

terminal environment. The SC simulator provides multiple views of the machine, in-

cluding cabin view, external view and bird-eye view. The simulator is operated via a

physical steering wheel, pedals and joystick. The truck simulation is linked to a weather

control system, which can be used to create various driving conditions for the simulator.

The truck is controlled via steering wheel and pedals, and the simulator system features

multiple LCD screens to provide a realistic view. Both of the implemented simulators

feature automatic mission control systems, and they also allow for evaluation of the

driver performance.

4.3 Utilization of game engines in other fields

In this section, a selection of previously implemented 3D applications from fields out-

side container handling industry is presented. In order to narrow down the scope of the

study, the example cases were chosen according to the following criteria:

1. The application is implemented by using a game engine, and

2. The application communicates with an external process, or it is used in

an interactive manner to emulate events of the real world.

 26

Based on the criteria, about 40 relevant cases were found with topics ranging from ar-

chitectural planning to physics modeling and various learning simulations. The applica-

tions referenced in this section represent approximately one third of all the studied ma-

terial. The cases that were left out were either relatively old or they were considered

uninteresting or very similar to the cases already cited.

The term serious game is commonly used to represent games that are developed for oth-

er purposes than pure entertainment. Common fields of application for serious gaming

include military, healthcare, education, virtual cities, and different kinds of training

simulators used by companies. These simulations don’t however necessary have any

interfaces to the external world, nor are they always implemented by using a commonly

available game engine.

Yuan et al. [37] present a design for a simulated training system for firefighters. Their

paper describes a distributed training environment, consisting of an application server, a

database server and multiple PC workstations, which are used to simulate different roles

of the fire crew. The fire scene is presented in a 2D map representation and an interac-

tive 3D scene implemented with open source game engine Delta3D.

Chittaro and Ranon [38] take a different approach to the fire protection. They describe a

serious game for providing virtual evacuation training for civilians. The presented evac-

uation game creates realistic scenarios of fire situations in a modeled university build-

ing. The scenarios are organized into levels with increasing difficulty, and the game

features a scoring system to evaluate the player’s performance. A separate 2D tool can

be used for analyzing the movement of players after the game. The game is implement-

ed with NeoAxis game engine, while using application named 3D Studio Max for mod-

eling the objects.

Mól et al. [39] describe another application for evacuation simulations. Their solution is

implemented by using Unreal Engine, and it provides a distributed environment with

one supervisor and multiple players. In addition to the ordinary computer screens, the

3D scene can be visualized on a 2 m x 3 m stereo-projection screen. The authors suggest

that the VR approach could be used beneficially to simulate emergency situations in

hazardous environments, like nuclear power plants.

In [40] an interactive space walking simulation for Oculus Rift headsets is created using

Unity as the game engine. Pictures and 3D models from NASA archives are used to

create realistic models of the Moon’s surface, Apollo Lunar Lander and the Internation-

al Space Station. Physics engine of Unity is used to simulate gravity conditions of actual

locations, while the controlling of player characters is implemented via conventional

pad controllers. The application is supposed to serve as an educational tool in an obser-

vatory environment.

 27

Kaasalainen [41] describes the use of VR technologies in rehabilitation and perception

analysis. The prospective users include stroke patients and other people with reduced

physical abilities. Two applications are created by using Unity for programming and

Oculus Rift for visualization: OcuTread simulates moving in a virtual outdoor environ-

ment for a user walking on a treadmill. Purpose of the application is to promote walking

training for stroke patients, who have temporarily lost their motoric abilities. The appli-

cation uses pedometer software of a smartphone to measure the walking speed of the

patient and to translate the corresponding movement to the virtual environment. OcuCar

is a driving simulation, which includes a steering wheel controller with force feedback

functionality. Besides driving, the user is supposed to react to signals generated by the

application by pressing the push buttons on the controller. The application is supposed

to measure changes in reaction times due to driver fatigue, and on elderly patients.

In [42] a driving simulator is developed, which integrates a steering wheel and a set of

pedals into a simulation system consisting of a motion platform, a driver’s seat and

Oculus Rift headset. The application is developed using Unity, and its purpose is to

provide a reusable set of simulation components, which can be combined with any up-

coming Unity projects. The project is expected to be used as a basis for ambulance driv-

ing simulations, which would serve as part of virtual learning environment for

healthcare students.

Further training simulations for medical staff are discussed in [43] and [44]. In the first

paper, three game engines are evaluated in order to find the best possible platform for

creating low cost clinical training applications. The implemented simulators should be

built by using custom content and they should allow cooperation between multiple users

over network. Sample applications are built for all three engines. The featured engines

are however relatively old from today’s perspective. The latter paper describes a surgi-

cal cutting simulation based on deformable objects. The implemented application allows

arbitrary cuts in the objects, proving that low-cost game engines could be used to simu-

late complicated surgical procedures.

In addition to serious games, 3D simulation visualizations are commonly used in design

tools of industrial systems. Common fields of application include robotics, architecture,

flow simulation, and design of power plants, just to name a few examples. These design

tools are often based on proprietary technologies, and their implementation details are

rarely revealed by the providing companies. Some of the reviewed cases describe design

processes for tools, which serve as in-house substitutes for commercial applications.

This underlines the fact that modern game engines allow relatively easy creation of tai-

lor-made visualization tools, given that the designers have sufficient knowledge of 3D

models and software development in general.

Korkiakoski [45] describes the use of Unity and VR technologies for visualizing three-

dimensional building models. The application is built on an existing software frame-

 28

work, which creates 3D models from building layout drawings. A browser application is

used to visualize the models and to modify them with different surface materials and

furniture setups. The VR application adds a further level of immersion to the framework

by allowing virtual walking inside the model. In the thesis work, two implementations

are created for Oculus Rift and Google Cardboard platforms.

Wang et al. [46] describe a software package for visualizing industrial processes in Uni-

ty. The paper presents three example processes from iron and steel industry: blast fur-

nace, overhead crane and vertical edger. Separate simulation software is used to perform

computational fluid dynamics and finite element analysis on the simulated processes.

The simulation results are imported into Unity, which uses predefined 3D models to

construct virtual environments based on the simulations. The application allows direct

interaction between the user and the environment, simulating the operations of a real

factory. The simulated cases can be used as training scenarios, which are especially use-

ful for emulating extreme working conditions. Implementations of the visualization

software are built for various platforms, including immersive theater, conventional PC,

smartphone and Oculus Rift. According to the paper, the physics model of the game

engine would not allow sufficiently accurate simulation to be viewed with a realistic

frame rate. The presented application uses precomputed simulation data, which makes it

essentially a non-real-time simulator.

In [47] a real-time monitoring system for a production line is developed using Unity.

The featured example considers a single workstation of a production line, consisting of

a working robot and conveyors, which are used for transporting pallets. The workstation

communicates with the web-based data acquisition system by using XML-based mes-

sages. A 3D model of the workstation is created using CAD/CAM software and export-

ed to modeling application Blender to make the model compatible with Unity. The

monitoring tool is implemented as a web-based application, which is used via Unity

browser plugin. The application provides animation for the robot and the pallets accord-

ing to the process data.

Makkonen et al. [48] demonstrate the use of open source tools for creating 3D visualiza-

tions for mobile machines. The study features a machine control system of an excavator,

which is visualized with a free open source game engine Panda3D. The application uses

GPS data of the actual machine to visualize the excavator on a virtualized roadwork

site. The authors suggest that the control system data of machines should be more com-

monly distributed by open methods to promote new ways of benefiting from the exist-

ing data.

Korpioksa [49] describes the using of programmable logic controllers (PLC) in coopera-

tion with Unity. Three different PLC systems are used to send commands to a virtual

drilling workstation, which is implemented with Unity. The Unity application then

sends simulated return values to the PLC system. Response times are obtained for two

 29

out of the three setups. The author states that some 3D modeling tools that are common-

ly used with PLC systems lack the real-time physics simulation, which is included in

Unity. This would make Unity a feasible choice for developing virtual test environ-

ments for PLC applications.

Patana [50] writes about the design and implementation of simulation and programming

tool for abrasive blasting robots. User of the application is able to load a robot and scene

model from a file and create work instructions for the robot by adding target points in

the 3D space. The resulting program can be visualized in the application or saved to a

file and uploaded to an actual robot. The application can be considered as an alternative

to the existing commercial robot simulation environments with similar functionality.

The data model of the application is written in Qt and the 3D visualization is generated

with Kajak3D game engine, which is developed in Kajaani University of Applied Sci-

ences.

According to the performed literature survey, experimental projects utilizing game en-

gines have already been done for a wide range of applications. Some of the reviewed

cases include small scale integration of physical machines or simulation systems to the

3D environments. There are also commercial tools available which allow connecting a

whole container terminal – either a physical one or simulated – to a real-time 3D visual-

ization. Some of these, namely TBA CONTROLS and Tideworks Terminal View, are

proven to use game engine technology for generating the 3D view. The rest of this the-

sis describes development of similar solution based on previously discussed Kalmar

products.

 30

5. REQUIREMENTS FOR THE VISUALIZATION

TOOL

In this chapter, requirements analysis is performed for the terminal visualization tool. In

the first four sections the application is defined in terms of what it should do. These

requirements were obtained based on the initial goals of the client, and the formal re-

quirements specification was written in cooperation with the client during the first

weeks of the thesis project. The resulting functional and non-functional requirements

are translated into technical requirements in section 5.5. This analysis serves as a start-

ing point for the game engine comparison, which is performed in the following chapter.

5.1 Purpose of the application

Purpose of the application is to provide a smoothly flowing and interactive 3D visuali-

zation of a virtual container terminal, which is being simulated on a separate server. The

involved CHE, containers and their environment should be modeled with such a preci-

sion that it creates a believable illusion of a working terminal. The application shall be

implemented by using a modern game engine framework, which is able to use imported

3D models.

5.1.1 Intended use

This application, known as FleetSimulator, may be considered a sub-project to a larger

virtualization project within Kalmar. The ultimate goal is to create entirely functional

virtual terminals prior to construction of any actual terminal equipment. This goal

would be achieved by using actual terminal software, including TOS and control sys-

tems, and simulation models for CHE. Besides CHE and containers, the application

should be capable of visualizing the static terminal layout, including apron, sea, build-

ings, rails, fences and further objects.

Possible users of the application include marketing people, who could use the applica-

tion for demonstrating Kalmar solutions to prospective and existing customers. It could

also be used by software developers, testers and project engineers to visualize the sys-

tems they are working on.

Including the application in customer software packages or using it for on-line visuali-

zation of actual equipment is not in the scope of the project. Although it should be tech-

 31

nically possible as the application shall utilize the same communication principles that

are used in production systems.

5.1.2 Features to be included

Since the application is supposed to utilize external simulation models, its focus should

be strictly in visualization. No physics modeling or trajectory planning should be per-

formed in the game engine platform, as the location and trajectory information for ob-

jects is acquired real-time from the simulation environment. The data acquisition rate

might however be variable or too low for creating an animation smooth enough to ap-

peal human eye. Thus, the application shall use the necessary methods to smoothen the

movement for the 3D view.

CHE status monitoring is beyond scope of the application, since efficient software tools

already exist for that purpose. The application could be run in conjunction with

Fleetview or EMS to allow both extensive monitoring of CHE and 3D visualization of

the events in the terminal. The possibility to create links from the 3D GUI to other tools

may be studied, but the application shall also be able to run independently without need

for any further software installations.

5.2 Application environment

The simulation environment for FleetSimulator should use actual TOS and Control Sys-

tem software, whereas the machine layer would be realized by simulation models that

represent the CHE on the field. The assumed use case for the application is illustrated in

Figure 15. The simulation environment – which is described on a very abstract level –

could theoretically be replaced with actual TLS and the situation to FleetSimulator

would remain essentially the same. Some aspects of the presented use case are covered

in the following sections.

Figure 15: Expected use case for the application

Spread
daemon
(UniQ)

TOS
Simulation
Environment

User PC

Fleet
Simulator

Fleetview/
Other tools

CS

CHE models

Configuration
data (XML,

3D models,...)

TCP/IP

 32

5.2.1 Connection to the simulation environment

The communication between the application and the simulation environment is estab-

lished by means of UniQ platform. The communication channel is built by connecting

to the Spread daemon, which is running on the simulation server. The daemon may be

accessed by using standard TCP/IP communication, thus the only parameters for the

connection are the IP address and port number of the daemon. These are combined to a

connection string, where a string 4803@127.0.0.1 would represent a spread daemon

running on the local host.

The most likely use case involves the application running on a PC, which is connected

to the simulation environment via local network or over the Internet with VPN. This

situation was illustrated in Figure 15.

5.2.2 Configuration data

In addition to the dynamic data from the simulation environment, some static data is

required for building a realistic model of the terminal. The application shall be able to

utilize same configuration files that are used by Fleetview, most importantly termi-

nal_layout.xml and machines.xml. Further XML files are required for UniQ communi-

cation, including tagmap.xml. Without these configuration files the visualization of the

terminal and communicating with TLS would not be possible in the first place.

To enhance the reusability of the XML data and the genericity of the application, as

little data as possible should be hard coded in the application. Run-time XML parsing

and procedural object generation should be used instead. It is although not absolutely

necessary to import the static terminal layout in order to visualize CHE and containers.

A blank asphalt field and some ready-made layouts may be provided as alternatives to

the dynamically created layout.

Realistic 3D models of objects are also required for visualization. It should be possible

to import such models in some common 3D modeling format, either in runtime or in the

design environment. In the ideal case, adding and replacing of models should be possi-

ble without making changes to the application code.

Configuration data shall be organized in a parameter folder and the application shall

provide a mechanism for defining the parameter folder address, along with other neces-

sary input parameters.

Creation and acquisition of mentioned configuration data is beyond scope of this thesis.

Users of the application must take care that the configuration files and required 3D

models for each project are available, valid and properly installed on the system.

 33

5.3 Functional requirements

Functional requirements of the application are divided in three priority classes. The fea-

tures listed as having a high priority represent the essential functionality to be imple-

mented in the prototype. The medium priority features supplement the core functional-

ity and their implementation is dependent on available time and resources as well as the

difficulty of the implementation. The low priority part lists additional features, which

will likely not be implemented in the prototype. The possibility to include these features

shall however be taken into account in the application design.

5.3.1 High priority

R 1 The application shall visualize the main components of the CHE based on the

predefined 3D models and dynamic status information from TLS. Movements of

the CHE shall be animated at a rate resembling real-time motion. The prototype

shall provide visualizations for ASCs and automatic straddle carriers.

R 2 The application shall visualize containers and their movements according to the

dynamic information from TLS. Handling of containers shall be animated

smoothly together with the CHE. The prototype shall provide visualizations for

most commonly used general-purpose containers with a few different exterior

options.

R 3 The application shall provide a 3D view of the terminal environment, which can

be zoomed and rotated freely.

R 4 The application shall be able to import and visualize the static world model from

an external source, such as terminal_layout.xml or a previously created 3D-

model in .blend, .fbx or .3ds format. As an alternative to these, a default world

model consisting of a blank asphalt field should be provided.

5.3.2 Medium priority

R 5 The application shall visualize routing information for the CHE.

R 6 The application shall visualize space reservations for the CHE and the target

slots for the carried containers.

R 7 The application shall visualize equipment ID.

R 8 The application shall allow communication from the GUI to the simulation envi-

ronment. E.g. the pressing of a push button on a truck kiosk shall toggle corre-

sponding communication.

R 9 In addition to the freely navigable 3D view, the application shall provide certain

standard views, which can be toggled at any point by using a hotkey or visual

menu. These standard views shall include at least a top view and isometric views

from four main directions.

 34

5.3.3 Low priority

R 10 The application shall have a configuration view, where the source of static world

model (e.g. Default/XML/Other) and connection details to dynamic data source

are specified. This configuration shall be done once during initialization of the

application. If no such view is provided, a dedicated configuration file shall be

used instead.

R 11 The application shall have a preferences view, where certain visualization fea-

tures - like route and/or reservation information, can be toggled on and off.

R 12 The application shall allow controlling of CHE from the game environment. E.g.

moving and lifting commands may be implemented for some CHE types.

R 13 The application shall provide machine views, where the camera can be locked on

a certain CHE or some other object to track their motion from different angles.

R 14 It should be possible to get the status information for a certain CHE by sending

commands to external applications (e.g. EMS or Fleetview).

R 15 The GUI shall feature a machine list, which can be used for locating certain CHE

and toggling functions specified in R 12 – R 14 for the selected CHE. The CHE

could also be selected in point-and-click manner.

R 16 Adding new 3D models or replacing existing ones should be possible without

need for modification, recompilation or reinstallation of the application.

5.4 Non-functional requirements

R 17 The application shall be implemented as a stand-alone executable. No installa-

tion of other applications shall be required and the installation package shall

contain all the necessary libraries and other resources.

R 18 It shall be allowed to create and run a.m. executables within Kalmar without any

payment to game development application supplier.

R 19 The most commonly used 3D models and XML configurations shall be included

in the installation package.

R 20 The application shall be usable on a gaming level PC running a 64-bit Windows

7 or newer.

R 21 Connection to the dynamic data source shall be established via local network or

a broadband Internet connection with VPN.

R 22 The application shall be able to smoothly visualize terminals with up to 60 CHE

and 10,000 containers.

R 23 Containers shall be handled as either static or active objects according to their

role. A container to be transported shall be converted to an active object and

again to a static object once it is grounded.

R 24 Data update interval from TLS shall be sufficiently short to allow smooth visual-

ization and sufficiently long to prevent excessive CPU and network usage. The

interval may be adjusted according to terminal size to meet these criteria.

R 25 The application shall utilize a world coordinate system similar to those used in

the underlying models.

 35

5.5 Technical considerations

The previously listed functional requirements lead to certain technical constraints,

which act as guidelines for the game engine selection process. When comparing to the

traditional view of game development and the design process commonly presented in

handbooks and tutorials, our application has certain distinctive features:

 Instead of building the 3D environment in editor before compiling and running

the application, nearly all objects have to be instantiated run-time according to

the XML data. The instantiation shall be controlled by the application code and

the solution must scale to any number and combination of objects as long as

their types are known.

 Instead of defining object behaviour in scripts, the movement of CHE and con-

tainers should be based on the external data from TLS. As the number of CHE

or control systems is not limited, these behaviours need to be copied along with

the visible 3D objects.

 The application shall animate the state of the objects at a frame-to-frame rate re-

gardless of the actual data update rate from the simulation environment. This

suggests that the data acquisition should be separated from its usage.

 The GUI shall also be able to interpret user inputs and send messages back to the

simulation environment.

Due to these assumptions, the chosen game engine should be relatively flexible in terms

of programmability: Run-time instantiation of objects should be straightforward and the

interaction between objects should be easy to implement. In order to make the GUI run

independently from the data acquisition, some type of multithreading is required. As the

UniQ communication shall be achieved by using ready-made libraries, the engine

should also be able to include external DLLs in the solution.

5.5.1 Proposed architecture

The dynamic nature of the application and the amount of required features calls for a

considerable amount of programming. In order to make the game engine project as sim-

ple as possible the data acquisition should be implemented in an external library. Figure

16 presents the proposed architecture for the application.

In the presented architecture, the game scripts are solely responsible for creating and

controlling the visible objects of the application. Data acquisition and storage is imple-

mented in a back-end library, which consist of several functional blocks:

 Object cache is responsible for providing common storage types for objects and

storing the data in such a form, that it can be easily consumed by the game

scripts.

 36

 XML reader contains the logic for parsing the configuration files and adding

the static objects and machines to the cache.

 Communication manager is responsible for setting up the UniQ communica-

tion and converting the arriving tag values into updates in the cache (and vice-

versa). After the initialization, the UniQ communication shall run in a separate

thread in order to decouple the data acquisition from its usage.

 Session handler controls the program workflow by passing calls to other

blocks.

Figure 16: Proposed architecture for the application

The presented architecture has some obvious advantages: As the required information is

stored in the cache, the data model can be tailored to meet the needs of the game scripts.

Coordinate mapping, unit transformations and transitions from 2-dimensional to 3-

dimensional space may be performed in the back-end, and the game scripts may always

receive the exact 3D world positions of the objects.

The 3D models are only known to the game engine project and the game scripts may

concentrate on propagating the changes in the cached model to the visible objects (and

vice-versa). The game engine project, on the other hand, is unaware of the communica-

tion manager and its dependencies. The game engine project depends only on the ses-

sion handler and the common data model, which makes it possible to replace the whole

back-end if necessary. The back-end should also be independent of the used game en-

gine technology.

As the game engine project and the back-end are separate software entities, their devel-

opment and maintenance can be done separately from each other, as long as the specifi-

cations and public interfaces are kept unchanged.

Game engine environment

Game

scripts
3D

objects

Back-end library

Object cache

(CHE, containers,

static objects...)

Session handler

<<thread>>

Communication

manager

XML reader

UniQ

libraries

terminal_layout.xml,

tagmap.xml,

machines.xml...

 37

6. CHOICE OF GAME ENGINE

Purpose of this chapter is to provide a deeper insight of what is understood as a game

engine and to perform a comparison between two engine candidates, one of which was

chosen as the development platform for the visualization tool. General characteristics of

game engines are discussed in section 6.1. The engine candidates for the visualization

tool development are presented and compared in section 6.2. Conclusions from the

analysis are presented in section 6.3.

6.1 Functions of a game engine

Finding an unambiguous definition for game engine is not a simple task. The term is

commonly used to describe a software framework or toolset, which allows simplified

development and execution of video games. More concretely, a game engine provides

game developers with tools that allow them to concentrate on creating the game content,

while letting the engine take care of lower level technical details.

Typical functions of a modern game engine include the following [51-53]:

 Rendering system is responsible for generating the graphical view and convert-

ing the calculated graphics into corresponding draw events on hardware. It is

one of the most fundamental parts of an engine, since it brings the defined game

world objects into visible pictures on the screen.

 Scripting system provides the tools for defining the game logic and adding in-

telligence to game objects via programming. The used programming languages

and development tools vary from engine to engine. Some engines are also

providing library functions and pre-made scripts, which the developer can modi-

fy to use them in his/her application.

 Input system is used to handle user inputs, which are given with keyboard,

mouse, touch screen or similar devices. In the game logic, events can be tied to

abstract input names instead of hard-coding them to fixed input values. The re-

sulting input table can then be mapped to actual devices by the end user.

 Physics engine is used to model physical behaviour of objects by applying con-

cepts like gravity, friction and physical forces to them. Physics processing is

typically separated from rendering, meaning that a visible 3D object may or may

not have a physics body attached to it. The physics body may also have a differ-

ent shape than the one that is being rendered. Physics modeling requires relative-

 38

ly lot of computation power. Thus, it should only be applied to objects for which

it is really needed. [52]

 Audio system handles sound effects and background music and converts them

into corresponding audio events on hardware. A 3D game engine is also sup-

posed to modify qualities of sound based on the offset between the listener and

the sound source. Further effects may be added according to the environment,

where the sound is being played. [52]

 GUI system is used to create and handle UI elements such as text boxes, buttons

and in-game menus. If these functions are not provided by the engine itself, they

may be written by the developer or imported as third-party libraries. [52; 53]

 Networking system provides tools and software components for handling the

network communication in multiplayer games.

Implementations of game engines vary from reusable software libraries to fully inte-

grated development platforms, with graphical level editors and design-time testing func-

tionalities. Some engines are specializing in 2D or 3D graphics, while some can be used

to develop both kinds of applications. The target platforms, where the developed appli-

cations can be used, are also varying from engine to engine.

In this thesis, the focus is on using services of a game engine to enable visualization of

container terminals according to simulation data. Underlying concepts, like 3D graphics

and physics modeling, are not covered in this document beyond the level that is neces-

sary for understanding the problems at hand.

6.2 Candidates for the implementation

The comparison of development platforms for the visualization tool was made between

two commonly used modern game engines: Unity and Unreal Engine.

Unity (also known as Unity3D) is a cross-platform game engine developed by Unity

Technologies. The first version of Unity was released in 2005 as an attempt to provide

amateur game developers with tools and technologies, which had previously been a

privilege of large game companies. By 2013, Unity Technologies had expanded from a

team of three programmers into a global software company, employing 285 people. [54]

The latest major version of the engine, Unity 5, is capable of producing visually appeal-

ing 2D and 3D applications for a wide range of platforms.

Unreal Engine (UE) by Epic Games was first introduced when it was used in the 1998

game Unreal. Since the release of the first engine version, the company has been licens-

ing the technology to other game companies so that they could use it in their titles. In

2009 a freely downloadable edition of Unreal Engine 3, known as Unreal Development

Kit, was published. [55; 56] The latest generation of the engine is Unreal Engine 4,

 39

which is offered with equal terms to independent game developers and large companies.

It is widely used for developing 2D and 3D applications for various platforms.

The number of engine candidates was limited to these two, as the time frame of the the-

sis project did not allow for making in-depth analyses of more technologies. The two

featured engines are also among the most popular in their field: In March 2016, the

global market share of Unity was claimed to be 45% with more than 4.5 million regis-

tered users, while UE was coming in second with a 17% share [57]. The popularity of

an engine correlates strongly with the amount of free support material that is available

on the Internet. Since game engines are very comprehensive toolsets, learning to use a

new engine from scratch would be relatively difficult and time-consuming without suf-

ficient training material.

The two engines were compared in terms of their applicability to the given development

task. Many features, which are typically interesting from game development point of

view, were not considered – like the capability to produce advanced graphical effects.

Both engines were considered adequate for providing the level of detail that is required

from the terminal visualization. Multiplayer or networking features of the engines were

not examined, as the connection to the UniQ environment was supposed to be imple-

mented by using external libraries. Finally, little attention was paid to the possibility of

porting the application to different target platforms. The requirements specification

states that the application shall run on a typical PC with Windows operating system.

Possible further platforms, which could come in question, include VR systems and mo-

bile devices, which are readily supported by both engines [58; 59].

The comparison was originally performed in early 2016 and the decision was made at

the beginning of April. The discussed features reflect the situation at that time, while

more recent changes are mentioned separately in the text.

6.2.1 Licensing

In April 2016, Unity 5 was available in Personal and Professional editions: The Person-

al edition was offered free of charge, while the Professional edition was available for

US $75 per month or US $1500 for unlimited license, with limited accessibility to free

updates. Both of the editions included the engine and an editor with all the basic fea-

tures. There were however restrictions on who is eligible to use the personal edition:

Purchasing of the professional license was required from commercial entities, whose

gross revenue or funding exceeds US 100,000$ per year, and from non-commercial enti-

ties with yearly budget exceeding the said amount. To the applications built with the

free version, a non-removable splash screen was included, stating that the application is

made using Unity Personal Edition.

 40

By October 2016, a new Unity Plus license has been introduced between the Personal

and Professional editions, and the payment schemes and revenue restrictions have been

modified: The new licenses are only available through monthly subscription, and the

number of “seats” per license can be managed more flexibly than before. There are also

separate revenue restrictions for the Personal and Plus editions. However, none of the

licenses forces the user to pay any royalties from the revenue made by using or selling

the created applications. [60]

Unreal Engine 4, on the contrary, is completely free to download and use for all kinds

of developers. The engine is also open for modifications, as the C++ source code of the

engine is available for all licensees, which is not the case with Unity. A royalty payment

of 5% is required from all gross revenue from the developed applications, as long as one

of the applications is grossing more than US $3,000 per calendar quarter. Some excep-

tions to this rule, as stated in the end user license agreement, are “architect-created

walkthrough simulations or contractor-developed in-house training simulators” and

“non-interactive linear media”. The latter includes movies and video clips that are creat-

ed by using the technology. [59; 61]

Epic Games is also offering special enterprise services for customers that are using UE

for other purposes than game development. These arrangements concern the amount of

support that is given to the developers. They don’t add any costs to the use of the engine

itself, nor do they remove the obligation to pay royalties. [59]

Based on this information, it seems that Unreal Engine could be used for developing the

visualization tool without charge, as long as the application is not distributed in ex-

change for money. In Unity, there is a license fee involved, when using the engine in

Kalmar projects.

6.2.2 Object model

Each of the engines provides a versatile editor environment, where the scenes of the

game are built from assets, like 3D models, and further components provided by the

game engine. The scenes can also be compiled and tested directly in the editor.

In Unity, the scenes are built out of GameObjects, which serve as containers for further

components. For example, a GameObject for a shipping container could consist of a 3D

model (a mesh with textures) that describes the physical appearance of the object, a box

collider that simulates the physical behaviour of the object, and a script, that adds pro-

gram logic to the object. Furthermore, each GameObject has a transform, which de-

scribes the position, orientation and scale of the object in the game world. GameObjects

can have parent-child relationships: e.g. the container object can have a child object

named door and when the container is moved or rotated in the scene, the door object

moves and rotates along with it.

 41

GameObjects can be saved as prefabs, which act as templates for new GameObjects.

E.g. when the previously mentioned container object is stored as prefab, each prefab

instance that is created will have exactly the same features than the original container.

Changes to the prefab will affect all the prefab instances. E.g. if one wanted to replace

the container model with a more realistic one, more complicated meshes and colliders

would be required for simulating the behaviour of doors and twistlock fittings. Once

done in the prefab, these changes would be copied to all container instances in the sce-

ne. Changes to an individual prefab instance will not affect other instances. E.g. when

the surface colour of one container in the scene is changed from red to blue, other con-

tainers stay red.

Unreal Engine’s equivalent of GameObject is the Actor class, which acts as base class

for all objects that can be placed in the game world. Each actor contains a hierarchy of

Components, which define the content of the actor, similarly to the components in Uni-

ty. Actors can be specialized and extended to create objects with custom functionalities.

E.g. an Actor, which is used to represent a player or an AI controlled object is called

Pawn. Character is a subclass of Pawn, with further components for modeling a crea-

ture with an animated body. The developer is able to create his/her own actor types and

components through inheritance. [62]

An actor with components may be saved to a Blueprint class, which is the UE equiva-

lent of a prefab. Unlike Unity prefabs, Blueprint classes can be extended to create new

types from the existing Blueprints. This simplifies the implementation of new features,

while changes in one Blueprint class are automatically inherited by all its children. [62]

While UE allows a lot of flexibility in defining the object model, the system used in

Unity is much easier to understand for a beginning developer. The lack of inheritance

on prefabs can be seen as a minor disadvantage: As many CHE types share similar

properties, it would be useful to create one common Machine class and derive the indi-

vidual machine types from it.

6.2.3 Modeling support

Unity allows importing of 3D models in at least 9 different file formats. The supported

types include portable formats like .fbx and .obj. and various proprietary file types used

by 3D modeling applications. The former can be imported in the Unity editor as such,

while the latter require the corresponding modeling software to be installed on the com-

puter. For these file types, automatic conversion is performed during the import. [63]

Among the supported modeling tools is the free open-source application Blender, which

can be opened directly by double-clicking a model in the Unity editor.

 42

Unreal Engine supports currently only .fbx and .obj formats for external models [62].

Thus, a 3D model of any other format must be exported manually to one of the two

formats before importing it in Unreal editor.

Unity allows importing textures in 11 different file formats, while the corresponding

number for UE is 8. Commonly used bitmap image formats like .jpg, .bmp and .png are

supported by both engines. [62; 64]

In addition to importing, both engines allow creation of 2D sprites and 3D objects di-

rectly in the editor environment. The native modeling capabilities of Unity are however

limited to a few basic shapes, like rectangular boxes, spheres and cylinders. UE allows

creating triangular objects and editing model geometry in the editor, while Unity does

not. More complicated shapes can be created in Unity by so call procedural mesh gener-

ation, where the 3D models are built in runtime from vertices and triangles connecting

them. It requires, however, that the corresponding mesh generation algorithm is written

by the developer.

6.2.4 Scripting system

The scripting system of Unity is based on Mono framework, which is an open-source

substitute of the .NET framework from Microsoft. It allows using standard .NET meth-

ods and data types in the scripts, and it is also possible to include existing .NET libraries

in the projects as built DLLs. In Unity projects, scripts are programmed by using either

C# or JavaScript
1
. A single project can contain scripts written in both languages. Unity

engine comes with the free MonoDevelop IDE for script development, but the engine

can also be integrated to Microsoft Visual Studio to enable easy programming and

runtime debugging of scripts.

The scripts that are used for controlling GameObjects are derived from MonoBehaviour

class of Unity engine. When a MonoBehaviour script is attached to a GameObject, its

certain methods are called automatically based on the situation of the object. E.g. after

initialization of a GameObject the Start method of its script component is called. During

program execution the status of GameObject is updated every frame by calling the Up-

date method of the script. It is also possible to add multiple script components to the

same GameObject.

Some of the most important methods provided by MonoBehaviour class are described in

Table 1. By default, each new script contains empty implementations for Start and Up-

1
 Unity’s version of JavaScript is also known as UnityScript, but the two terms are being mixed even in

the official documentation. E.g. the scripting documentation states that UnityScript is a proprietary lan-

guage modeled after JavaScript [65], while the official web page mentions only JavaScript. The term

JavaScript is also used in Unity editor and in various scripting examples.

 43

date, but methods can be added and removed as much as is necessary for defining the

behaviour of the object.

Table 1: Examples of the methods provided by MonoBehaviour class [66]

Method name Description

Awake This method is called when the script component is being loaded.

Start This method is called at the beginning of the execution, before calling any of

the Update methods.

Update This method is called every frame.

FixedUpdate This method is called on fixed interval, regardless of the actual frame rate.

LateUpdate This method is called every frame after all other Update methods have been

called. It is useful e.g. for updating position of a camera that follows some

other object at a fixed distance.

OnMouseDown This method is called, when the user presses mouse button over a physical

item belonging to the GameObject.

OnDestroy This method is called when the GameObject or its script component is being

destroyed.

The programming system of Unreal Engine is based on C++ and every object of the

engine is essentially a C++ class. Program logic is added to objects by attaching Script

components to actors. Adding a script component results in creation of a skeleton class,

where the methods Initialize and Tick are used in a similar manner that Start and Update

in MonoBehaviour scripts. [62] The scripting itself can be done in C++ or by using the

visual Blueprint scripting language. The latter is based on graphical nodes, representing

variables, functions and events. The desired functionality is created by connecting the

nodes into visual networks.

An example of Blueprint scripting is given in Figure 17. The script calculates the dis-

tance between two vectors, given by Point A and Point B, converts the result into a

string and prints it on the screen [67].

Figure 17: Example of Blueprint visual scripting. The two functions that are used in

this script are defined in separate networks. [67]

The possibility to use visual scripting may be attractive for developers with no previous

coding experience. However, relatively lot of nodes and connections are required for

 44

defining an algorithm that would require only few lines of code, when using a high-

level programing language. Modeling the entire behaviour of one CHE alone would

lead to an awkwardly large network of functions. Blueprints are also known to run up to

10 times slower when comparing to C++ scripts with similar functionality [68; 69].

Thus, relying solely on Blueprints could lead to performance issues in terminals, where

thousands of containers are added during initialization and hundreds of machine status

updates are handled each second.

The runtime generation of terminal objects calls for a controller class, which handles the

creation and initialization of objects based on the cached input data. Implementing such

class might be difficult by using the Blueprint language. Furthermore, the C++ scripting

system of UE is more complex than the C# syntax used in Unity, and there are not many

detailed programming examples available for the former. This is a major disadvantage

for UE.

6.2.5 Other features

Each of the engine providers is hosting a web store for distributing ready-made content,

with items ranging from 3D models to sound effects and script packages. In April 2016

Unity Asset Store contained more than 25,000 items, of which more than 2,000 were

available free of charge. The amount of items in Unreal Engine Marketplace was some-

what smaller and there was very little free content available.

Each of the engines allows using some external version control system directly from the

editor. Even though the supported systems were different for the two engines, it was not

considered an important factor for the decision process. Popular version control systems

like Subversion and Git may be used through graphical client applications, which show

all the changes in the local file structure at one glance. They can also be easily config-

ured to ignore files that are not relevant for the version control. Thus, version control of

a project can be easily achieved without having the version control system integrated to

the engine itself.

6.3 Conclusion

While both engines have their advantages and disadvantages, Unity was chosen as the

development platform for a variety of reasons: Firstly, it allows using of 3D models

previously created in Kalmar. The existing models can be imported in the editor envi-

ronment as such, and new models can be easily created by using Blender. Secondly, the

engine has already been used in VR applications within Kalmar. Thus, the existing ter-

minal models can be easily copied to a new project.

Unity was also very intuitive to use and easy to learn based on the training material.

After spending two hours with a video tutorial, one was able to create prefabs and de-

 45

velop behaviour scripts independently. There is also a vast amount of support material

available in the Web, including plenty of tutorials, comprehensive programming refer-

ence, freely distributed code snippets, forum discussions and more. The object model of

UE was much more difficult to grasp, and the training material for scripting seemed to

concentrate on the Blueprint language. After spending several hours with documenta-

tion, no clear idea was formed of how to implement the proposed functionality with the

engine.

Finally, there were well-documented .NET libraries available for wrapping the native Qt

implementation of UniQ libraries. An example project was provided for establishing the

communication with relatively few lines of C# code. Author’s previous experience from

.NET development in Visual Studio environment contributed to the choice of C# as the

main programming language for the project.

Taking into account all these factors, a decision was made for Unity, as it was seen to

allow fastest possible prototyping for the visualization tool.

 46

7. SOLUTION DETAILS

The visualization tool was implemented with Unity (version 5.3.4) and Microsoft Visual

Studio, using C# as the sole programming language. Since Unity is currently using rela-

tively old version of Mono framework, some libraries in the dependency chain had to be

rebuilt to target .NET version 3.5 or older. This caused some extra work in early phases

of the implementation. However, once it was possible to initiate calls to UniQ libraries

from Unity project, the application development was relatively straightforward.

Following sections describe the structure and technical details of the solution. External

behaviour of the application is demonstrated in Appendix 1.

7.1 Structure of the application

Figure 18 illustrates the high-level architecture of the application. When comparing to

the initial proposal in Figure 16, there are few differences. The back-end is split in three

interconnected libraries: FSBackendLib.Common, FSBackendLib and

FSBackendLib.UniQ. UniQ libraries are only referenced by the latter, i.e. the communi-

cation components are only visible within that module. FSBackendLib.Common is ref-

erenced by all other modules, allowing bi-directional communication between the Unity

project and communication components.

Figure 18: High-level architecture of the application

For giving the general input parameters to the application, a dedicated XML configura-

tion file FleetSimulator.config was created. An example of the file syntax is given in

Program 4. The file is used to define the location of other configuration files on the user

FleetSimulator (Unity project)

Unity

scripts
3D

objects

FSBackendLib.

Common.dll

FSBackendLib.

UniQ.dll

UniQ

libraries

FSBackendLib.

dll

• FleetSimulator.config

• terminal_layout.xml

• machines.xml

• tagmap.xml

• alarmlist.xml

 47

computer and the address of the Spread daemon, which is used for communication. The

user is also able to choose between the dynamic terminal layout, which is parsed from

terminal_layout.xml, and fixed layout options, which were created in Unity editor dur-

ing design-time. The layout is chosen according to the StaticLayoutType parameter. The

SimulatorMode parameter is used to define whether the application is used to visualize

simulated terminal or actual systems.

<?xml version="1.0" encoding="utf-8"?>

<!-- General configuration file for FleetSimulator -->

<FSConfiguration>

 <!-- Address of the Spread daemon -->

 <SpreadAddress>4803@127.0.0.1</SpreadAddress>

 <!-- Address of the parameter folder, containing tagmap.xml,

 alarmlist.xml, terminal_layout.xml and machines.xml. -->

 <ParameterFolderAddress>

 C:\FleetSimulator\parameters\example_terminal

 </ParameterFolderAddress>

 <!-- Source of the static terminal layout.

 Set "dynamic" to parse the layout from XML. -->

 <StaticLayoutType>dynamic</StaticLayoutType>

 <!-- Defines source of CHE status tags.

 Set true for simulated systems. -->

 <SimulatorMode>true</SimulatorMode>

</FSConfiguration>

Program 4: Example of FleetSimulator.config

Modules of the application are described in more detail in the following sections.

7.1.1 Structure of the back-end

Internal structure of FSBackendLib.Common is presented in Figure 19. Purpose of the

module is to provide a common data model that is used by all parts of the application.

Figure 19: Structure of FSBackendLib.Common

 48

In the application, objects of the terminal are divided in three logical groups, each of

which has its own collection class called cache.

 Static objects represent the terminal objects, which are instantiated during

startup, but have no active role in the simulation. These are parsed from termi-

nal_layout.xml and include asphalt, water, rails, fences, buildings, etc.

 Machines include the physical machines of the terminal and the control sys-

tems, which are relevant for communication and visualization. These are parsed

from machines.xml and used in both initialization and runtime communication.

 Containers include the containers of the terminal and the related concepts like

stacks. These are obtained in runtime from the control systems.

In addition to these three groups, the back-end has its own coordinate types, allowing

easy transformations from XML data to 2D space and from 2D space to the 3D coordi-

nate system used in Unity. Further data structures are used for mapping an object’s posi-

tion to its parent system, as described earlier in Chapter 3.

The classes and data types defined in FSBackendLib.Common are visible to all other

modules of the application, but the caches are only defined as interfaces. Their imple-

menting classes are included in FSBackendLib, as illustrated in Figure 20.

Figure 20: Structure of FSBackendLib

In addition to the cache implementations, FSBackendLib contains classes that perform

the parsing of configuration files and insert the corresponding data objects to the caches.

 49

Parsing of tagmap.xml and alarmlist.xml is performed in UniQ libraries, so these files

are not handled separately in the back-end. Main class of the back-end is FSSession-

Manager, which handles the input parameters from FleetSimulator.config and controls

the program workflow by passing requests to other classes. It is also the only class,

which is visible from outside of the library. This means that the cache implementations

are hidden from the client.

It was initially planned that the cache implementations could be in some cases replaced

with so called stubber classes to provide well-defined example data to be used with the

Unity project. Writing and maintaining of the stub implementations proved to be more

laborious than using actual process data from virtual test environments. Thus, the stub-

bers were eventually removed from the final solution.

Communication between the application and simulation environments is implemented

in FSBackendLib.UniQ. Simplified structure of the module is presented in Figure 21.

The library consists of a communication manager class and different types of tag listen-

er classes. During the initialization FSCommunicationManager uses the machine cache

to get a list of machines and instantiates one FSTagListener per each CHE or control

system. Tag listener classes contain the logic for ordering and parsing tags and for pass-

ing the updated data to the respective objects in caches.

An example of the interaction between classes is given later in section 7.1.3.

Figure 21: Simplified structure of FSBackendLib.UniQ. External communication com-

ponents by Kalmar and other parties are excluded from the diagram.

In order to allow easy testing of back-end components, a simple test application was

written to be used with Visual Studio debugger. The test application acts as a client for

the back-end libraries and uses their public methods like the Unity project would do.

Instead of visualizing the items, the application provides a console output for the log

 50

messages of FSBackendLib.UniQ as shown in Figure 22. The greatest benefit from the

test application is the possibility to run the back-end code step-by-step, see the status of

all objects and insert breakpoints into code. Since the Unity project uses back-end com-

ponents as built DLLs, it is not possible to do detailed analysis of the code behaviour

when using the libraries in Unity environment.

Figure 22: UniQ traffic logging from the test application

7.1.2 Structure of the Unity project

The Unity project consists of five scenes. One of the scenes acts as a loading view,

which is shown to the user during startup. The other four scenes represent the different

layout options, one of which is loaded according to the input parameter value from

FleetSimulator.config. Structure of the dynamic layout scene is presented in Figure 23.

The scene uses the cached data from terminal_layout.xml to build the static terminal

layout during runtime.

SceneManager is the main organizational unit of the scene and it uses the SceneControl-

ler script to call the services of the back-end. The three additional Handler-objects act

as organization units for static objects, machines and containers respectively. Their con-

troller scripts make calls to the respective caches and instantiate the visible objects ac-

cording to the cached data. Each CHE object has its own controller script, which is poll-

ing the status of the corresponding machine object in the cache. Containers have no

scripts attached to them. Thus, when not manipulated by ContainerController or some

other object, the containers act like static objects, lying passively in the scene.

The other three scenes have almost similar structure, with the exception that static ob-

jects have been defined in design time and there is no StaticObjectHandler or StaticOb-

jectController. These scenes may also be used without terminal_layout.xml as the static

 51

object cache is not used at all. Figure 24 illustrates a static layout scene based on the

Kalmar test site in Tampere.

Figure 23: Structure of the dynamically built Unity scene

Figure 24: Prebuilt static layout scene based on the Kalmar test site in Rusko, Tampere

 52

7.1.3 Communication between modules

Figure 25 gives an example of the communication between classes of the application,

performing initialization and data visualization for a single straddle carrier object. Step-

by-step description of the process is given below.

Figure 25: Example of the initialization and usage of a straddle carrier object. Some

steps are omitted from the diagram to maintain readability.

Steps 1 – 9 are performed once during startup and initialization.

1. SceneController calls FSSessionManager, asking for a reference to the machine

cache.

2. FSSessionManager initializes an FSMachineCache object.

3. An object of type FSStraddle is created and added to the cache. Effectively this

is achieved by calling FSMachineListReader, which parses machines.xml and

populates the cache with corresponding machine objects.

4. FSSessionManager calls the initialization method of FSCommunicationManag-

er.

5. FSCommunicationManager calls the machine cache through interface and re-

quests a list of machines.

6. A StraddleUpdateListener is created with a reference to the cached FSStraddle.

7. Reference to the machine cache is returned to SceneController, which passes it

to the initialization method of MachineController.

8. MachineController uses the machine cache through interface and requests a list

of physical machines.

 53

9. MachineController instantiates a straddle carrier object and initializes its con-

troller script with a reference to the cached FSStraddle.

After the initialization, steps 10 – 12 are repeated as long as the application is running.

10. StraddleUpdateListener converts the arriving tag values into updates to the

cached FSStraddle.

11. – 12. StraddleController reads the cached values on each frame from FSStraddle

and updates the state of the visible straddle model according to the data.

StraddleUpdateListener consists of multiple tag receivers, each of which has a dele-

gate to the respective handler method. When a tag is received, its handler method is

called automatically in a separate worker thread, which is assigned by UniQ librar-

ies. Thus, the receiving and updating of data is fully parallel to the visualization.

7.1.4 Reasoning for the architecture

The implemented architecture satisfies the previously stated goals of tailored data

model and limiting the responsibilities of Unity scripts. It represents a layered struc-

ture, with clear responsibilities on visualization layer, data storage layer and com-

munication layer.

The application is following a rough MVC (Model-View-Controller) kind of pat-

tern, where the model part comprises the whole back-end with the related configura-

tion files and external systems. Unity scripts and user controls represent the control-

ler part, which uses the 3D models and visible GUI components to create the view.

Structure of the back-end allows creating multiple different views for the same mod-

el, with one view being the previously described test application.

The solution uses dependency injection to decouple the Unity scripts from the

communication components. FSSessionManager acts as a factory, creating and pop-

ulating the cache objects for the client. FSCommunicationManager acts as an injec-

tor, establishing the communication and initiating updates to the caches. The Unity

project knows only about the session manager and the common data model and is

not interested of how the cached data is being acquired.

Dependencies to any third-party libraries are encapsulated within

FSBackendLib.UniQ, while the other modules of the back-end are written solely on

standard .NET libraries. The back-end is also independent of any data structures de-

fined in Unity engine, so it could theoretically be used with other visualization en-

gines as such or through a suitable wrapper interface.

 54

7.2 Handling of 3D objects

The application makes extensive use of Unity’s prefab system in the creation and han-

dling of 3D objects. E.g. a prefab for a straddle carrier contains a real-size 3D model of

the machine, which is by default positioned in the origin of the terminal, facing positive

X-direction. The prefab contains also the controller script, which is being copied along

with prefab instances. Thus, each visible straddle object is controlled by its own in-

stance of the StraddleController class.

Prefabs can be used as parameters for other scripts, as is illustrated in Figure 26. The

prefab for automated shuttle is given as parameter for MachineController script, which

is attached to MachineHandler object of the scene.

Figure 26: Example of using a prefab as a parameter for Unity script

Prefabs, like any other GameObjects can be used as variables in code. Program 5 con-

tains the Unity commands for instantiating a prefab for an ASC and initializing its con-

troller script based on the cached data. Position of the object is defined as Vector3 and

its rotation is set by using the Quaternion data structure.

 FS_ASC cachedASC;1 // Cached data of the ASC

GameObject ASCPrefab; 2 // Template for an ASC object

 3 // Get the initial position and heading for the machine

var position = cachedASC.GetPosition(); 4

Vector3 positionVector = new Vector3(position.x, position.y, position.z); 5

float rotationAngle = cachedASC.GetRotation(); 6

Quaternion rotation = Quaternion.AngleAxis(rotationAngle, Vector3.up); 7

 8 // Create an ASC object according to the data

GameObject ASCObject = 9

Instantiate(ASCPrefab, positionVector, rotation) as GameObject; 10

ASCObject.name = cachedASC.GetName(); 11

12 // Initialize the controller script of the newly created ASC object

ASCController controller = ASCObject.GetComponent<ASCController>(); 13

controller.Initialize(cachedASC); 14

Program 5: Unity commands for creating an ASC object based on the cached data

 55

The 3D model, which is used in ASC prefab, is presented in Figure 27. The Hierarchy

panel on the right shows the internal structure of the model, which forms a tree of par-

ent-child relationships. E.g. the Spreader object is a grandchild of Trolley. Thus, when-

ever the trolley is moved, the spreader moves along with it. When the spreader is moved

separately, it does not affect the position of trolley or any other components higher in

the hierarchy.

Figure 27: ASC model and its subassemblies

Each subcomponent of a model can be considered as a separate GameObject. Program 6

demonstrates the Unity commands for getting the position and orientation data for the

ASC object and its subassemblies.

 1 // Find a CHE instance named "ASC"

GameObject ASC = GameObject.Find("ASC"); 2

 3 // Get the position of "ASC" in terminal coordinates

Vector3 ASCPosition = ASC.transform.position; 4

 5 // Get the rotation of "ASC" around vertical axis

float ASCHeading = ASC.transform.eulerAngles.y; 6

 7 // Find a subassembly named "Trolley"

GameObject trolley = ASC.Find("Trolley"); 8

 9 // Find a further subassembly named "Spreader"

GameObject spreader = trolley.Find("Spreader_headblock/Spreader"); 10

11 // Get the local and terminal coordinates for the spreader

Vector3 spreaderGlobalPosition = spreader.transform.position; 12

Vector3 spreaderLocalPosition = spreader.transform.localPosition;13

Program 6: Unity commands for accessing the ASC model and its subassemblies

 56

In the end of Program 6, two different positions were obtained for the Spreader: Global

position describes the position of the object in common scene coordinates, while its

local positon describes its position in relation to its parent. The local transform of the

Spreader object can be seen in Figure 27. The coordinate axes of the transform are dif-

ferent from those of the scene.

The possibility to use local coordinates makes it easy to apply trolley and hoist positions

to the ASC objects: The crane’s trolley position is measured as its offset from a fixed

point on the gantry. Position of the spreader (or hoist height) is measured as the vertical

distance between the spreader and the ground. When this information is applied to the

3D model, it is sufficient to change an object’s position along one axis in its local coor-

dinate space. The model hierarchy guarantees that all relevant components are moved

along with the manipulated object.

Global position of the spreader is used, when attaching containers to the spreader. The

container handling also takes advantage of the parent-child relationships, as is demon-

strated in Program 7. For the time between picking and grounding, the container object

is made a child of the spreader. This makes the container move along with the crane

until the time it is grounded, and no separate code is required for animating its move-

ment. Structure of the ASC object after applying the code is illustrated in Figure 28.

 1 // Find a container object named "SampleContainer"

GameObject container = GameObject.Find("SampleContainer"); 2

 3 // Position the container into the spreader

container.transform.position = spreader.transform.position; 4

 5 // Make the container a child object of the spreader

container.transform.parent = spreader.transform; 6

Program 7: Unity commands for assigning a container to the spreader

In MonoBehaviour scripts, the object owning the script can also be manipulated without

declaring the GameObject separately in the code. E.g. in the case of Program 6, the ex-

pression transform.position would be equal to ASC.transform.position, given

that the script itself is a component of ASC. In the code examples of this thesis, the ma-

nipulated GameObjects are always declared for clarity reasons.

 57

Figure 28: ASC model with the picked container

7.2.1 Comments on the used methods

The previous, simplified code examples make extensive use GameObject.Find, which

searches for a GameObject according to its name. Using the method is considered as

bad practice by some developers. One argument against use of the method is that it

needs to iterate through all GameObjects of the scene to find the desired object [70].

This may lead to performance issues, when the method is used frequently [71].

In FleetSimulator code the machine subcomponents are stored in member variables of

the controller scripts during the initialization. Thus, the Find method is only used by

CHE controller scripts during startup. Container finding is performed every time when

information about pick or ground event is received from the back-end. This may happen

up to few times per second in larger terminals, but using GameObject.Find does not

seem to cause any performance loss, when applied only sporadically. If such problem

would arise, a separate list with references to container objects could be used to com-

pletely avoid using of the method.

Another argument against GameObject.Find is that it creates hidden dependencies by

making assumptions of objects’ names [70]. In FleetSimulator application the names

are typically obtained from the back-end during runtime, or they are properties of the

3D model, which the controller script is supposed to manipulate. Thus, whenever a

model’s naming is modified, its controller script needs to be updated as well.

 58

7.3 Handling of container instances

Since there is no direct link between TOS and the UniQ platform, container events are

sent to UI by the control systems. Container events are communicated by using update

messages, which consist of basic data of the container, optional location information

and a status field. Possible status updates for a container include ADDED, PICKED,

GROUNDED and DELETED, among few others.

Like was described in Chapter 3, each CS has its own interpretation of the containers in

its operational area. These “container maps” overlap in the interchange areas of ASC

blocks. As the container moves through the terminal, it will eventually be registered by

various control systems.

Figure 29 illustrates a situation, where a container has three simultaneous representa-

tions in the cache. The container was initially located in an ASC block controlled by

ASCCS002. It was then picked by a straddle and moved to transfer area of another ASC

block. From viewpoint of ASCCS002 the container is DELETED. HTCS sees it as

GROUNDED and knows the exact X-Y-position where the container was left. The new

position is shared with ASCCS001, which sees the container as ADDED. From the up-

date by ASCCS001, only the logical slot position of the container is known.

Figure 29: Multiple cached instances of the same container, with varying statuses

In the 3D world there can be only one physical instance of each container and every

visualized container must have a well-defined 3D position. FSContainerCache contains

the logic for solving container’s actual state from multiple ambiguous container up-

dates. The logical stack positions are converted to exact positions based on the stack

information, which is received from the CS during startup. Vertical position of each

container is calculated based on its tier number and the height information of the con-

tainers lying lower in the same stack. Internal structure of FSContainerCache is illus-

trated in Figure 30.

ASCCS001

ASCCS002

HTCS

Container X

Position: logical

State: ADDED

Container X

Position: none

State: DELETED

Container X

Position: exact

State: GROUNDED

Container X

Position: X.Y.Z

State: ?

FSContainerCache

 59

Figure 30: Structure and working principle of FSContainerCache

The cache contains separate lists for container and stack information. These lists allow

storing of multiple container or stack instances with same name, as long as they are re-

ceived from different control systems. The UniQ part of the application contains one

ContainerUpdateListener per each CS. Internal logic of the cache is used to solve the

actual states of the containers and to store the resulting updates in the Updated contain-

ers list. The information is then handed over to the ContainerController script, which

applies the changes to the physical container objects of the scene.

All the mentioned list structures in FSContainerCache are protected with mutual exclu-

sion mechanisms to prevent concurrent read and write operations, or writing attempts by

multiple threads. Exclusive access to the list ensures that the list remains unmodified by

other threads for the duration of each operation. This is especially important during ini-

tialization, when there may be more than 10 ContainerUpdateListeners storing their

updates in the cache simultaneously. The Updated containers list is also acting like a

buffer, which is emptied after each update request from ContainerController.

Due to the large amount of calculation that takes place during the parsing of container

and stack information, some delay is added between operations to prevent excessive

CPU usage. The amount of spawned 3D containers per frame is also limited to keep the

UI navigable during initialization.

In the case of Figure 29 the visualized position would be the average of the positions

given by HTCS and ASCCS001. If one of the positions could not be resolved, e.g. due to

missing stack information, the container would be visualized according to the other in-

stance.

 60

7.4 Movement algorithm for machines

Unity provides built-in mechanisms for creating animations for objects. These mecha-

nisms involve programming the magnitude and timing of movements into pre-defined

curves, which can be looped to emulate continuous movement. In the case of simulated

CHE positions, both the magnitude of movement and its speed are a priori unknown.

Thus, implementing the movement with animations would require extensive parametri-

zation and/or modification of animations during runtime. Animations could however be

used to visualize events that are not based on constant change of tag values, such as

opening of a gate or arrival of a road truck.

Program 8 describes an algorithm for converting cached position values into movement

of 3D object by manipulating its position directly. Generic var variable type is used to

represent data types, since the actual cached types depend on the target object. In

FleetSimulator, algorithms like the one presented are used to handle 3D vectors, linear

float values and rotation angles.

var cachedMachine; 01 // Cached data of the machine
GameObject Machine; 02 // 3D-representation of the machine
float animationInterval; 03 // Time span for the animation
var previousPosition;04
var targetPosition; 05

06 // This method is called once per frame
void UpdatePosition()07
{08

09 // Test if the target value has changed
var cachedPosition = cachedMachine.GetPosition();10
if (cachedPosition != targetPosition) 11

{12
previousPosition = Machine.transform.position;13
targetPosition = cachedPosition;14

}15
16 // Animate the movement frame by frame

var currentPosition = Machine.transform.position; 17

if (currentPosition != targetPosition) 18

{19
float timeStep = Time.deltaTime / animationInterval;20
var movementStep = timeStep * (targetPosition - previousPosition);21
var diffPosition = targetPosition - currentPosition;22
if (movementStep <= diffPosition) 23

{24
Machine.transform.position += movementStep;25

} 26

else27
{28

29 // The target is closer than one step away
Machine.transform.position = targetPosition; 30

}31
}32

}33

Program 8: Generic movement algorithm for a machine

The UpdatePosition method is called every frame by the machine’s controller script.

The first if statement is used check if the cached value has changed since the previous

 61

frame. The difference between previousPosition and the tagged targetPosition is then

animated over the time span defined in animationInterval. The method Time.deltaTime

returns the amount of time that has passed since the last frame. It is used to calculate the

amount of movement that is required for the current frame, thus keeping the speed of

movement constant regardless of the application frame rate.

If the target has not been reached before a new cached value is received, a new previ-

ousPosition is calculated based on the latest achieved position. If the cached value does

not change, the object will eventually reach its targetPosition and both of the higher

level if statements will evaluate as false.

Every machine type in FleetSimulator has multiple movement algorithms, which are

evaluated one after another. For an ASC, the position is updated separately for gantry,

trolley, hoist and spreader length. For shuttles and straddles, updates are made in posi-

tion, orientation, hoist height and spreader length. Algorithms are called in the Update

method of the machine’s controller script, and the changes are visualized after all Up-

date methods have been completed.

7.4.1 Calculation of the animation interval

When tags are being requested from the simulation environment, the requested time

interval between consecutive values is defined as 𝑇𝑡𝑎𝑔_𝑜𝑟𝑑𝑒𝑟, which by default has a

value of 500 ms. In order to calculate the actual data update interval 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 as per-

ceived by the movement algorithm, some delay variables need to be introduced:

 Communication delay 𝑡𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 represents the difference between

𝑇𝑡𝑎𝑔_𝑜𝑟𝑑𝑒𝑟 and the actual time from the previous received tag value to the next

one. Its value varies according to the workload of the sending system and the

network delay.

 Writing delay 𝑡𝑤𝑟𝑖𝑡𝑒 is the time that is used to parse the received tag value and

store the corresponding data in the cache. Parsing of position tags is usually very

fast operation, but if the system is loaded by multiple concurrent write opera-

tions, 𝑡𝑤𝑟𝑖𝑡𝑒 may be up to some milliseconds.

 Reading delay 𝑡𝑟𝑒𝑎𝑑 is the time that passes before the new cached value is read

by the movement algorithm. Unity application scans through all the update

methods of the scene before rendering each frame, and its frame rate may be

around 10 FPS (frames per second) at lowest. Thus, 𝑡𝑟𝑒𝑎𝑑 can be anything be-

tween 0 – 100 ms.

The actual time between two values registered by the Unity application is now given by

𝑇𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑇𝑡𝑎𝑔_𝑜𝑟𝑑𝑒𝑟 + ∆𝑡𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + ∆𝑡𝑤𝑟𝑖𝑡𝑒 + ∆𝑡𝑟𝑒𝑎𝑑. (2)

 62

In the current solution, the animation interval 𝑇𝑎𝑛𝑖𝑚𝑎𝑡𝑖𝑜𝑛 is defined as

𝑇𝑎𝑛𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 𝑇𝑡𝑎𝑔_𝑜𝑟𝑑𝑒𝑟 + 𝐷𝑎𝑛𝑖𝑚𝑎𝑡𝑖𝑜𝑛, (3)

where 𝐷𝑎𝑛𝑖𝑚𝑎𝑡𝑖𝑜𝑛 is a constant value. In the ideal case 𝑇𝑎𝑛𝑖𝑚𝑎𝑡𝑖𝑜𝑛 should be about equal

to 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 to keep the animation synchronized with the tagged values. If 𝑇𝑎𝑛𝑖𝑚𝑎𝑡𝑖𝑜𝑛 is

much smaller than 𝑇𝑢𝑝𝑑𝑎𝑡𝑒, the machine will reach its target position and stop before a

new target position is received, which makes the animation look bumpy. If 𝑇𝑎𝑛𝑖𝑚𝑎𝑡𝑖𝑜𝑛 is

much larger than 𝑇𝑢𝑝𝑑𝑎𝑡𝑒, the machine will start moving slowly compared to the tag

values and eventually gain speed while trying to catch up. Practice has shown that set-

ting 𝐷𝑎𝑛𝑖𝑚𝑎𝑡𝑖𝑜𝑛 to 200 ms provides sufficiently smooth and timely animation in most

situations.

7.4.2 Possible improvements

One option for making the animation follow the tag information precisely would be to

store the values in the cache together with their time information. This would require a

timestamp to be stored with each tag value and a new animation interval to be calculat-

ed for each updated position. This would add some complexity and computational

workload to the application.

In some situations it would also be possible to get the speed information for machines in

separate tags. Using these values in animation would however require a far more com-

plicated algorithm, as the time difference between receiving a position tag and a speed

tag could be anything from zero to 𝑇𝑢𝑝𝑑𝑎𝑡𝑒. Using the speed information to predict posi-

tions would also mean that the position information from the simulation environment

would be replaced with a newly calculated value. As the application is only supposed to

visualize information that is produced in the simulation environment, the current ap-

proach of animating the movement based on the latest known position is sufficient.

7.4.3 Handling of rotations

Calculating rotations with the previously discussed algorithm requires special attention

due to the nature of heading angles: values 0° and 360° result as same orientation, and

there may even be jumps from negative values to positive, and vice-versa.

In order to perform reliable calculation, all incoming values from the back-end and 3D

models must be first converted to 0° – 360° range. Even then, there is a risk of errone-

ous behaviour, when passing the 360° limit. The situation is demonstrated in Table 2.

Each row of the table represents an update due to a new tag value.

 63

Table 2: Example behaviour of rotation angles, when passing the 360° limit

i Previous angle Target angle Difference

1 335° 345° 10°

2 344° 356° 12°

3 355° 5° -350°

4 5° 14° 9°

During the first two updates the model would be turning steadily towards the 360° ori-

entation. The third update would cause the object to suddenly spin almost a full circle in

the opposite direction and then continue the movement as it did before the third update.

Similar situation would arise, when approaching the 0° orientation from above.

To prevent this type of errors, the value of Previous angle needs to be corrected, when a

large change in target angle is observed. The Current angle value, which is obtained

every frame from the 3D object, needs to be corrected as well. After applying the cor-

rections the situation would look like in Table 3.

Table 3: Example behaviour of rotation angles after applying the correction

i Previous angle Target angle Difference

1 335° 345° 10°

2 344° 356° 12°

3 355° -5° 5° 10°

4 5° 14° 9°

 64

8. TESTING AND EVALUATION

Purpose of this chapter is to describe the testing procedures and analyze the functionali-

ty of the application against the requirements that were presented earlier in Chapter 5.

Section 8.1 covers the performance tests that were used to examine the behaviour of

application, when working with large amounts of terminal objects. Further development

ideas and requirements, which were not implemented during the thesis project, are dis-

cussed in section 8.2.

8.1 Performance testing

The application was primarily tested with virtual terminal environments, which include

control systems and other components of a real TLS. Fleetview was used to create con-

tainer events and jobs for the simulated CHE. Objects of the terminal were then visual-

ized in FleetSimulator, allowing easy comparison between the two GUI applications.

For testing the application against requirement R 22 from Chapter 5, a virtual example

terminal was created based on a real customer site. The environment included 10 func-

tional ASC blocks with 19 cranes plus 28 straddle carriers, totaling in 47 CHE and sev-

eral control systems. Separate test tools were used to add 10,000 containers to the envi-

ronment.

In order to maximize the movement of machines, a small utility application named

TagBomber was used to send simulated tag values to the environment. The straddles

were made to drive on diagonal paths, while constantly changing their orientation and

hoist position. ASCs were made to drive back and forth in their block, while constantly

changing their trolley position, hoist position and spreader length. Various tag sending

intervals were used for different machines, resulting in approximately 600 tags per sec-

ond for the whole terminal. The FleetSimulator project was run in Unity editor on a

separate computer. Technical specifications of the test computer are listed in Table 4.

Figure 31 shows a view of the simulated terminal during the test.

Table 4: Technical specifications of the test computer

CPU Intel Xeon E5-2620 v3 @ 2.40 GHZ

Memory 24.0 GB RAM

GPU NVIDIA GeForce GTX 960

Operating system Windows 7 Professional with Service Pack 1

Unity version Unity 5.3.4f1

 65

Figure 31: A view of the simulated example terminal during the performance test

The profiler window of Unity was used to analyze the application’s performance during

the test. An example of profiler’s output is shown in Figure 32. The light green area of

the CPU curve represents the amount of computation time that was used for rendering

the graphical view. Execution of scripts, which is shown in cyan, represents less than

2% of the total computation time on the given frame. This number is possibly not in-

cluding all the data processing that takes place in the back-end (see 8.1.2).

Figure 32: Unity profiler output during the performance test

 66

Profiling the view from Figure 31 resulted in frame rates slightly above 10 FPS. When

the camera was turned up towards the sky, the frame rate soared up to around 60 FPS,

where it was kept by synchronization delay. Similar numbers were observed when all

the machines were stopped. Thus, the amount of movement was not causing notable

changes in application behaviour. However, in order to provide a smooth user experi-

ence, the frame rate should be kept at least 30 FPS in all situations. Techniques for op-

timizing the graphical performance are discussed in the following section.

8.1.1 Techniques for improving the frame rate

When analyzing the view of Figure 31 with tools provided by Unity, it was seen to con-

sist of more than 20,000 meshes and have over 10 million triangles rendered on each

frame.

Following techniques were found useful for optimizing the graphical performance:

 Limiting the visibility range of shadows or disabling them completely. Disabling

of the shadows during the test situation dropped the amount of rendered trian-

gles to around 4 million and raised the frame rate immediately to about 20 FPS.

 Limiting the visibility range of small objects, such as fence posts.

 Using as few individual meshes and materials as possible for modeling the ob-

jects. Each mesh should also contain as few polygons as is necessary for the giv-

en detail level. [72]

 Using simplified models for objects that are far away from camera. Unity pro-

vides mechanisms for changing the level of detail (LOD) of objects according to

their distance from camera. Up to three different models can be used for each

object, with consecutively growing detail level. However, all three models must

be imported to the project and added to a LOD group by the developer. [73]

 Testing different surface shader options for objects. There seemed to be clear

drop in frame rate, when changing from the standard opaque shader to a more

complicated one. However, no significant gain was observed when visualizing

objects without textures or lightning.

 Adding occlusion culling to the scene. Occlusion culling means disabling (cull-

ing) of meshes, which are being hidden (occluded) by other objects. By default,

all objects within camera’s view angle are being rendered, even when the view is

blocked by other objects in front of the camera. [74] In terminal environment

this means, that all containers of a block are being rendered, despite that only a

fraction of them is actually shown by the camera. The typical workflow for ena-

bling occlusion culling involves selecting the meshes and generating (baking)

the occlusion data in the editor during design-time [74]. Thus, applying it to a

procedurally generated scene, where objects are being spawned during runtime,

may be difficult.

 67

 Using methods like global fog to limit the visible terminal area to a certain dis-

tance. This is more sophisticated method than bare camera clipping, which

makes the distant objects disappear completely. However, camera clipping may

be needed for culling the objects that are hidden behind the fog.

Even when using the listed techniques, keeping the frame rate constantly above 30 FPS

may prove challenging, given that the whole terminal should be visible at all times. This

is due to large amount of container objects, which cannot be simplified by much.

The last suggestion of hiding some of the objects is basically violating the principle of

visualizing the whole terminal. One option could be to create UI mechanisms for tog-

gling the fog on and off and changing the draw distances during runtime. This would let

the user to decide the trade-off between the visibility and performance.

8.1.2 CPU profiling of back-end

It was not clear, whether the profiler data of Figure 32 included the data acquisition that

takes place in the back-end. Back-end components were profiled separately by using the

previously described test application and diagnostic tools provided by Visual Studio.

The profiling was performed on a development laptop, powered by Intel Core i7-

4810MQ with 2.80 GHZ clock rate. The resulting CPU load curve is presented in Fig-

ure 33.

The back-end seems to be consuming about 20% of all CPU resources, when running in

Visual Studio debugger with logging output disabled. This number was, however,

thought to be an overestimation caused by the debugging environment: When the pro-

ject was running in Unity editor and camera was pointing away from containers and

CHE, the whole process was consuming less than 4% of CPU resources according to

Windows Task Manager. Since the back-end is not a separate process, its calculation

load is supposed be included in that number.

Figure 33: CPU profiling of the back-end during the stress test

 68

8.1.3 Conclusion

Results of the performance test suggest that large amount of movement is not causing

performance issues, when using the application with the specified amount of CHE and

containers. The number of machines in the test was slightly smaller than was specified

in R 22. However, the amount of movement tags per second was much larger than could

be expected in real situations: In actual terminals, all the machines are rarely moving

simultaneously, and all position tags of a machine are not changing at the same time.

Generally, the performance test can be considered as a success, despite some shortcom-

ings in the graphical performance.

8.2 Further development ideas

The implemented application satisfies all the most important functional and non-

functional requirements from Chapter 5. Adding visualizations for further items – like

routes, space reservations and new CHE types – should be straightforward, when ex-

panding the existing framework of Unity scripts, cached objects and tag listeners.

The movement of CHE is currently animated on relatively coarse level: E.g. the wheels

of machines are not moving, the lifting cables are not visualized, and there are no ani-

mations for twistlocks. There are currently no plans of adding any physics model to the

application, as it would greatly increase the computational load. Thus, any movement

that is not directly given by tag values must be approximated based on another events.

Some of the static objects from terminal_layout.xml are visualized as plain rectangular

objects. More detailed models and additional program logic could be added to improve

them as well.

8.2.1 Including interaction in the application

The application does not yet contain any interaction that was specified in R 8. A con-

cept for adding message sending to the application is presented in Figure 34.

Classes of the diagram don’t correspond to any existing data structures in the applica-

tion. It is e.g. not yet defined, whether there should be a separate cache for the items to

be sent, or should they be attached to the relevant machines or control systems.

The message or command is supposed to be stored in the back-end until it is handled by

the message handler thread of the communication library. The sending Unity script

should not wait for any longer that is necessary to store the message in the back-end.

This conforms to the principle of decoupling the communication components from the

visualization, and vice-versa.

 69

Figure 34: Principle for adding message sending to the application

The presented concept was tested briefly by adding few new methods to the Unity pro-

ject and the back-end. The user was able to order deletion of a certain container by

pressing F8 key in the GUI. Pressing of the key caused a variable in FSContainerCache

to change its value. The variable was monitored by a thread owned by FSCommunica-

tionManager, which converted the information into a message which was sent to UniQ.

As a result, deletion of the container was observed in Fleetview and the 3D GUI alike.

There was no observable delay or freezing associated with the event, proving that the

message sending was decoupled from the visualization thread.

8.2.2 Alternative data sources

The application was originally specified to acquire its process data in real-time from a

simulated TLS. There have also been ideas about adding playback functionality, which

would allow replaying saved simulation results in various speeds. This could probably

mean that the application should read the historical simulation data from a log file or

database instead of receiving it from UniQ.

A principle for adding the log parsing into the existing application is presented in Figure

35. In this scheme, FSBackendLib.UniQ is replaced with a LogPlayer library, which is

responsible for reading the logged simulation data and creating the corresponding up-

date events to the cached objects at correct times. For the cached objects and the Unity

project the situation would be the same as if the data was received from UniQ. This is

one benefit from handling the data acquisition in a separate module.

Unity project

<<thread>>

MessageHandler

FSMessageSender

InteractionObject

Controller

FSMessageCache

CachedMessage

FSBackendLib.dllFSBackendLib.UniQ.dll

Button pushed /

Message sent

FSCommandSender

 70

Figure 35: Example of adding alternative data sources to the existing architecture

For adding the playback functionality, some additional parametrization would be re-

quired, so that FSSessionManager may define the used data source. The Unity project

should also have the necessary UI elements for controlling the playback, and there

should be a mechanism for passing the commands to the LogPlayer library.

8.2.3 Other requirements

Most items in the low priority part of the requirements list are related to features offered

in the 3D GUI. They don’t add any complexity to the back-end, as they could be easily

implemented by using the existing architecture and the interaction system described

above.

R 14 states that it should be possible to send commands from the 3D GUI to Fleetview

or some other application to get status information for machines. It has not yet been

studied, if such cross-application linking can be implemented. It is, however, perfectly

possible to run the application side-by-side with Fleetview to see the CHE status data

together with 2D and 3D visualizations.

R 16 states that it should be possible to change the used 3D models or add new ones in

the built application. This would require some import mechanism to be added to the

application itself, as Unity does not store the models in the application folder as separate

files. A page in Unify Wiki provides source code for ObjImporter class, which could be

used to create meshes from .obj-files during runtime [75]. In addition to the meshes, at

least textures would be needed for creating a visible model. Runtime model generation

should certainly be possible, but it would be relatively complicated in comparison to

handling the models it in the editor prior to the build.

FleetSimulator (Unity project)

Unity

scripts
3D

objects

FSBackendLib.

Common.dll
LogPlayer

Simulation

logs

FSBackendLib.

dll

terminal_layout.xml,

machines.xml...

 71

9. CONCLUSIONS

In this thesis, Unity game engine was used to develop a real-time 3D visualization tool

for automated container terminals. The implemented application can be configured by

using terminal-specific XML files and it visualizes the static terminal layout and con-

tainer handling machines based on the XML data. Container handling operations and

machine movements are animated based on live data from the process. The application

communicates with the terminal automation system by using the same communication

protocol that is used in actual production systems. The application can be used to visual-

ize simulated systems and actual terminals alike. It was also proven, that the application

can be extended to send messages back to the terminal automation system, acting as an

interactive GUI.

The visualization was tested with a virtual terminal, containing several thousand con-

tainers and 47 individual machines. It was proven that the application is able to acquire,

store and visualize machine position information at rate of hundreds of messages per

second without showing any significant flaws in performance. However, the large

amount of objects in the terminal makes the visualization of the whole area a challeng-

ing task for a conventional PC. Further graphical optimization and experimenting is

required in order to provide sufficient frame rate and smooth animation in all situations.

According to the performed literature survey, 3D visualizations and game engine based

experiments play an increasingly important role in many fields. The wide availability of

game engines has made 3D application creation more accessible than ever, with Unity

being by far the most used platform at the moment. In the field of container terminal

logistics, many commercial 3D applications are already provided for planning, simula-

tion and supervision of operations. The emerging virtual reality technologies are also

bringing new and exciting possibilities e.g. for creating immersive training simulations

for scenarios, that would otherwise be very difficult to emulate.

Unity was found to be an excellent tool for creating 3D applications with relatively little

learning effort. It can be recommended for visualization projects, despite some technical

shortcomings, like outdated .NET version. Unity may not be the most graphically ad-

vanced game engine in the market, nor is it necessary the best platform for performing

heavy calculations: In this thesis project, the focus was on visualizing a large-scale pro-

cess, which is being simulated in a separate environment. When creating accurate real-

time simulations for objects with complicated physics, a totally different set of require-

ments would apply for the development tools. Running such simulations for a large

number of objects might also be impossible on a single computer.

 72

The developed visualization tool has many possible applications within Kalmar, as it

can be connected to any system that implements the common communication protocol.

Possible fields of application include product development, marketing, sales, project

engineering, system testing and possibly even adding the visualization tool in the cus-

tomer software packages. Due to the modular structure of the software, new features

and alternative data sources can be added without changing the internal data model or

visualization logic. Development of the application will continue within Kalmar and it

will be used for producing visualizations for upcoming terminal emulation projects.

 73

REFERENCES

[1] J. Bose, T. Reiners, D. Steenken, S. Voss, Vehicle dispatching at seaport container

terminals using evolutionary algorithms, System Sciences, 2000. Proceedings of the

33rd Annual Hawaii International Conference on, pp. 10 pp. vol.2.

[2] D. Steenken, S. Voß, R. Stahlbock, Container terminal operation and operations re-

search - a classification and literature review, in: H. Günther, K.H. Kim (ed.), Container

Terminals and Automated Transport Systems, Springer Berlin Heidelberg, 2005, pp. 3-

49.

[3] Container port throughput, annual, 2008-2014, UNCTADstat, web page. Available

(accessed 20.07.2016):

http://unctadstat.unctad.org/wds/TableViewer/tableView.aspx?ReportId=13321.

[4] Container port traffic, The World Bank Group, web page. Available (accessed

20.07.2016): http://data.worldbank.org/indicator/IS.SHP.GOOD.TU.

[5] C.A. Thoresen, Container Terminals, in: Port Designer's Handbook (3rd Edition),

ICE Publishing, 2014, pp. 321-353.

[6] B. Brinkmann, Operations Systems of Container Terminals: A Compendious Over-

view, in: J. Böse (ed.), Handbook of Terminal Planning, Springer-Verlag New York,

2011, pp. 25-39.

[7] Equipment, Kalmar, web page. Available (accessed 14.07.2016):

https://www.kalmarglobal.com/equipment/.

[8] J. Pirhonen, Automated Shuttle Carrier Concept, in: J. Böse (ed.), Handbook of

Terminal Planning, Springer-Verlag New York, 2011, pp. 41-59.

[9] Internal media bank, Kalmar, Copyright © Cargotec 2014.

[10] M. Soukka, Area Layout Data Handling Solution for Container Terminals, Master

of Science thesis, Tampere University of Technology, 2015, 62 p. Available:

http://urn.fi/URN:NBN:fi:tty-201512181835.

[11] Kalmar Shuttle Carrier - Data sheet, Kalmar, web page. Available (accessed

19.07.2016): https://www.kalmarglobal.com/globalassets/equipment/shuttle-

carriers/kalmar-shuttle-carrier-data-sheet-2016.pdf.

[12] Innovation makes TraPac's moves count, Kalmar, web page. Available (accessed

19.07.2016): https://www.kalmarglobal.com/globalassets/customer-cases/all-customer-

cases/trapac/customer-case-trapac.pdf.

[13] F. Meisel, Operational Planning Problems, in: Seaside Operations Planning in Con-

tainer Terminals, Physica-Verlag, Heidelberg, Germany, 2009, pp. 17-30.

 74

[14] N4 - Features & Functionality, Navis, web page. Available (accessed 28.07.2016):

http://navis.com/sites/default/files/pages/docs/n4_features_and_functionality_3.1_0_20

15.pdf.

[15] Manage any volume of containers with Master Terminal, Jade Software Corpora-

tion Limited, web page. Available (accessed 28.07.2016):

https://www.jadeworld.com/solutions-for/logistics/master-terminal-tos/containers/.

[16] RBS website, Realtime Business Solutions, web page. Available (accessed

28.07.2016): http://www.rbs-emea.com/.

[17] Kalmar Automation System Architecture, Cargotec Finland Oy, Internal documen-

tation, 2014.

[18] Terminal UI, Cargotec Finland Oy, Training material, 2016.

[19] T. Piipari, Dynamic Configuration Management, Master of Science thesis, Tampe-

re University of Technology, 2013, 44 p. Available: http://urn.fi/URN:NBN:fi:tty-

201303211098.

[20] A. Lehtonen, Data Distribution Protocol for Container Handling Equipment Inter-

face, Master of Science thesis, Tampere University of Technology, 2010, 82 p.

[21] The Spread Toolkit, Spread Concepts LLC, web page. Available (accessed

03.08.2016): http://www.spread.org/.

[22] Hannu Santahuhta, Senior Manager, Simulation & Virtual Environments, Kalmar,

Interview 05.08.2016.

[23] Internal marketing material, Kalmar, Copyright © Cargotec 2016.

[24] DreamPort User Guide, Cargotec Corporation, 2016.

[25] FlexTerm webpage, Moffat & Nichol, web page. Available (accessed 15.08.2016):

http://www.flexterm.com/index.html.

[26] FlexTerm / FlexSim Container Terminal Software, Talumis BV, web page. Availa-

ble (accessed 15.08.2016): http://talumis.com/flexterm/.

[27] Terminal View product sheet, Tideworks Technology Inc, web page. Available

(accessed 15.08.2016): https://www.tideworks.com/wp-

content/uploads/2015/03/Terminal-View-product-sheet-120914.pdf.

[28] Tideworks charts its path, WorldCargo News, Vol. November, 2013, pp. 30-31.

[29] CHESSCON Overview, ISL Applications GMBH, web page. Available (accessed

15.08.2016): http://www.downloads.isl-applications.com/CHESSCON-Overview.pdf.

 75

[30] CHESSCON Virtual Terminal, ISL Applications GMBH, web page. Available

(accessed 15.08.2016): http://www.downloads.isl-applications.com/CHESSCON-

VirtualTerminal.pdf.

[31] TBA CONTROLS web page and brochure, TBA Netherlands, web page. Available

(accessed 15.08.2016): https://www.tba.nl/en/software/controls.

[32] J. L. Bijl, C. A. Boer, Advanced 3D visualization for simulation using game tech-

nology, Proceedings of the 2011 Winter Simulation Conference (WSC), 11-14 Decem-

ber 2011, IEEE, pp. 2810-2821.

[33] Y. Saanen, M. Koekoek, The Future: Serious Gaming in Automated Terminals,

Port Technology, No. 65, February 2015, pp. 81-83.

[34] Play the terminal: 'Safe-T Game', TBA Netherlands, web page. Available (accessed

15.08.2016): https://www.tba.nl/en/company-info/press-section/105/play-the-terminal-

safe-t-game/.

[35] H. Lau, L. Chan, R. Wong, A virtual container terminal simulator for the design of

terminal operation, International Journal on Interactive Design and Manufacturing

(IJIDeM), Vol. 1, No. 2, 2007, pp. 107-113.

[36] A. Bruzzone, F. Longo, L. Nicoletti, R. Diaz, Virtual simulation for training in

ports environments, Proceedings of the 2011 Summer Computer Simulation Conference

(SCSC '11), Society of Modeling & Simulation International, Vista, CA, USA., pp. 235-

242.

[37] D. Yuan, X. Jin, J. Zhang, D. Han, Applying Open Source Game Engine for Build-

ing Visual Simulation Training System of Fire Fighting, AsiaSim 2007: Asia Simula-

tion Conference 2007, Seoul, Korea, October 10-12, 2007. Proceedings, Springer-

Verlag Berlin, Heidelberg, Germany, pp. 365-374.

[38] L. Chittaro, Serious Games for Training Occupants of a Building in Personal Fire

Safety Skills, 2009 Conference in Games and Virtual Worlds for Serious Applications,

IEEE, pp. 76-83.

[39] A. Mól, C. Jorge, P. Couto, Using a Game Engine for VR Simulations in Evacua-

tion Planning, IEEE Computer Graphics and Applications, Vol. 28, No. 3, 2008, pp. 6-

12.

[40] A. Peltola, Virtuaalitodellisuuden soveltaminen opetus- ja opastuskäytössä,

Bachelor's thesis, Turku University of Applied Sciences, 2015, 42 p. Available:

http://urn.fi/URN:NBN:fi:amk-2015111916864.

[41] J. Kaasalainen, Virtuaalitodellisuuslaitteiden sovellukset kuntoutuksessa ja

havainnoinnin analysoinnissa: suunnittelu ja toteutus, Bachelor's thesis, Turku

University of Applied Sciences, 2015, 40 p. Available: http://urn.fi/URN:NBN:fi:amk-

201505219335.

 76

[42] T. Tapio, Ajosimulaation toteutus Unity 3D-pelimoottorilla, Bachelor's thesis, Lap-

land University of Applied Sciences, 2014, 65 p. Available:

http://urn.fi/URN:NBN:fi:amk-201404234724.

[43] S. Marks, J. Windsor, B. Wünsche, Evaluation of Game Engines for Simulated

Clinical Training, Proceedings of the New Zealand Computer Science Research Student

Conference 2008, The University of Auckland, Auckland, New Zealand, pp. 92-99.

[44] M. Kibsgaard, K.K. Thomsen, M. Kraus, Simulation of surgical cutting in deform-

able bodies using a game engine, Abstract, GRAPP 2014 - Proceedings of the 9th Inter-

national Conference on Computer Graphics Theory and Applications, 7-9 January 2014,

pp. 342-347.

[45] J. Korkiakoski, Virtuaalilasien käyttö Unity-pelimoottorilla rakennetussa 3D-

visualisointisovelluksessa, Bachelor's thesis, Oulu University of Applied Sciences,

2016, 32 p. Available: http://urn.fi/URN:NBN:fi:amk-201604124219.

[46] J. Wang, L. Phillips, J. Moreland, B. Wu, C. Zhou, Simulation and Visualization of

Industrial Processes in Unity, SummerSim '15 Proceedings of the Conference on Sum-

mer Computer Simulation, July 26-29, 2015, Society for Modeling & Simulation Inter-

national (SCS), San Diego, CA, USA, pp. 1-7.

[47] H. García Pájaro, A 3D Real-Time Monitoring System for a Production Line, Mas-

ter of Science Thesis, Tampere University of Technology, 2012, 78 p. Available:

http://urn.fi/URN:NBN:fi:tty-201206181197.

[48] T. Makkonen, R. Heikkilä, A. Kaaranka, K. Nevala, Roadwork site 3D virtual vis-

ualization using open source game engine and open information transfer, Abstract, 31st

International Symposium on Automation and Robotics in Construction and Mining,

ISARC 2014 - Proceedings, 9-11 July 2014, University of Technology Sydney, pp. 697-

701.

[49] M. Korpioksa, Cooperation between Unity and PLC, Bachelor's thesis, Seinäjoki

University of Applied Sciences, 2014, 42 p. Available: http://urn.fi/URN:NBN:fi:amk-

2014120318107.

[50] T. Patana, Raepuhallusrobotin simulointiympäristö, Bachelor's thesis, Kajaani Uni-

versity of Applied Sciences, 2012, 31 p. Available: http://urn.fi/URN:NBN:fi:amk-

2012060712105.

[51] B. Nilson, M. Söderberg, Game Engine Architecture, Mälardalen University, 2007,

Available: http://www.idt.mdh.se/kurser/cd5130/jgms/2007lp4/report9.pdf.

[52] M. Enger, Game Engines: How do they work? CBS Interactive Inc., web page.

Available (accessed 08.10.2016):

http://www.giantbomb.com/profile/michaelenger/blog/game-engines-how-do-they-

work/101529/.

 77

[53] E. Kalderon, Game engines: What they are and how they work, web page. Availa-

ble (accessed 08.10.2016): https://nullpwd.wordpress.com/2011/05/09/game-engines-

what-they-are-and-how-they-work/.

[54] J. Brodkin, How Unity3D Became a Game-Development Beast, Dice / DHI Group,

Inc., web page. Available (accessed 20.08.2016):

http://insights.dice.com/2013/06/03/how-unity3d-become-a-game-development-beast/.

[55] B. Steiner, How the Unreal Engine Became a Real Gaming Powerhouse, Hearst

Communications, Inc., web page. Available (accessed 20.08.2016):

http://www.popularmechanics.com/culture/gaming/a9178/how-the-unreal-engine-

became-a-real-gaming-powerhouse-15625586/.

[56] C. Bleszinski, History of the Unreal Engine, IGN / Ziff Davis LLC., web page.

Available (accessed 20.08.2016): http://www.ign.com/articles/2010/02/23/history-of-

the-unreal-engine.

[57] This engine is dominating the gaming industry right now, The Next Web, Inc., web

page. Available (accessed 20.08.2016):

http://thenextweb.com/insider/2016/03/24/engine-dominating-gaming-industry-right-

now/.

[58] Unity - Multiplatform - Publish your game to over 10 platforms, Unity Technolo-

gies, web page. Available (accessed 20.08.2016):

https://unity3d.com/unity/multiplatform.

[59] Unreal Engine FAQ, Epic Games, Inc., web page. Available (accessed

09.10.2016): https://www.unrealengine.com/faq.

[60] Licensing options of Unity, Unity Technologies, web page. Available (accessed

09.10.2016): https://store.unity.com/?_ga=1.155460989.770757390.1454678151.

[61] Unreal Engine End User License Agreement, Epic Games, Inc, web page. Availa-

ble (accessed 09.10.2016): https://www.unrealengine.com/eula.

[62] Unreal Engine 4 For Unity Developers, Epic Games, Inc., web page. Available

(accessed 11.10.2016):

https://docs.unrealengine.com/latest/INT/GettingStarted/FromUnity/.

[63] Unity manual: 3D formats, Unity Technologies, web page. Available (accessed

11.10.2016): https://docs.unity3d.com/Manual/3D-formats.html.

[64] Unity manual: Textures, Unity Technologies, web page. Available (accessed

11.10.2016): https://docs.unity3d.com/Manual/class-TextureImporter.html.

[65] Unity manual: Creating and Using Scripts, Unity Technologies, web page. Availa-

ble (accessed 12.10.2016):

https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html.

 78

[66] Unity scripting reference: MonoBehaviour, Unity Technologies, web page. Availa-

ble (accessed 12.10.2016):

https://docs.unity3d.com/ScriptReference/MonoBehaviour.html.

[67] Blueprints Visual Scripting - Functions, Epic Games, Inc., web page. Available

(accessed 13.10.2016):

https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/Functions/.

[68] What is the cost of using Blueprint instead of C++?, UE4 AnswerHub, web page.

Available (accessed 13.10.2016):

https://answers.unrealengine.com/questions/23167/blueprint-overhead.html.

[69] A. Koloska, Blueprints vs C++, web page. Available (accessed 13.10.2016):

http://shootertutorial.com/2015/06/06/blueprints-vs-c/.

[70] A. Biggs, Unity Devs, stop using GameObject.Find! web page. Available (accessed

30.09.2016): https://akbiggs.silvrback.com/please-stop-using-gameobject-find.

[71] Unity scripting reference: GameObject.Find, Unity Technologies, web page.

Available (accessed 30.09.2016):

https://docs.unity3d.com/ScriptReference/GameObject.Find.html.

[72] Unity manual: Optimizing graphics performance, Unity Technologies, web page.

Available (accessed 02.10.2016):

https://docs.unity3d.com/Manual/OptimizingGraphicsPerformance.html.

[73] Unity manual: LOD Group, Unity Technologies, web page. Available (accessed

02.10.2016): https://docs.unity3d.com/Manual/class-LODGroup.html.

[74] Unity manual: Occlusion Culling, Unity Technologies, web page. Available (ac-

cessed 06.10.2016): https://docs.unity3d.com/Manual/OcclusionCulling.html.

[75] ObjImporter, Unify Wiki, web page. Available (accessed 02.10.2016):

http://wiki.unity3d.com/index.php?title=ObjImporter.

 79

APPENDIX 1: SCREENSHOTS FROM THE APPLICATION

When the application is started, it will first open a configuration window, which has

separate tabs for graphics and user input. These are illustrated in Figure 36 and Figure

37 respectively.

Figure 36: Initial configuration for graphics

Figure 37: Initial configuration for input devices

 80

The configuration window is created automatically by Unity during the build, if the de-

veloper has not chosen to disable it. Its contents are set according to the settings defined

in the Unity project. It is not possible to add any custom content besides the ones that

are included by default. Thus, for any additional configuration, a separate configuration

view or other mechanism needs to be added to the application itself. This was one of the

main reasons for using separate XML file for configuration.

After proceeding from the configuration window, the application starts in an initializa-

tion view, which is illustrated in Figure 38. Parsing of the configuration files and load-

ing of the chosen target scene takes place at this point. The scene is selected according

to the StaticLayoutType parameter in FleetSimulator.config.

Figure 38: Initialization view

When loading of the target scene is completed, the application opens a 3D view of the

terminal, where the user can navigate freely with a flying camera. The machines are first

visualized in their default positions and moved immediately, when their corresponding

position tags are received.

Container objects are created one-by-one during runtime. Container spawn rate is lim-

ited to 200 boxes per second in order to avoid excessive CPU load and keep the UI nav-

igable during the initialization. Full initialization of a terminal with 10,000 containers

takes approximately one minute.

 81

Figure 39 shows an aerial overview of the simulated example terminal as visualized in

the application. Figure 40 shows the same area visualized in Fleetview.

Figure 39: Aerial 3D view of the simulated example terminal

Figure 40: The simulated example terminal visualized in Fleetview

Figure 41 and Figure 42 present closer views of ASC cranes. Straddle and shuttle opera-

tions are illustrated in Figure 43 and Figure 44 respectively.

 82

Figure 41: First-person view of ASC blocks

Figure 42: ASC crane picking a container

 83

Figure 43: Straddle carrier navigating between linear stacks

Figure 44: Shuttle carrier bringing a container to the interchange area

The previous pictures illustrated the dynamic terminal layout, which is created in

runtime according to terminal_layout.xml. In addition to the dynamic layout, and the

Rusko test site illustrated in Figure 24, the application offers two more options for the

static terminal layout. The empty layout (Figure 45) contains a pre-made scene with

 84

fixed field dimensions and background. The none layout (Figure 46) contains no static

objects at all, which makes the animations look somewhat smoother than in other scenes

due to higher frame rate.

Figure 45: Machines and containers visualized in the “empty” layout scene

Figure 46: Machines and containers visualized in the “none” layout scene

