6 research outputs found

    Acerca del contenido económico del derecho

    Get PDF
    Useful information on catalytic reactions can be achieved using Monte Carlo simulations combined with experimental data from model catalysts. We present a comprehensive analysis of the simulation studies of CO hydrogenation on a hexagonal surface using a discrete computer model for the irreversible reaction kinetics with no interactions between the surface species but their mutual reactions. The simulation results are compared to experimental data from a cobalt foil model catalyst at 101 kPa and 525 K. As a result, the following microscopic picture of the reaction on the catalyst surface is extracted: the rate‐limiting reaction step is the termination of the carbon chains (α‐hydrogenation), hydrogen atoms occupy different adsorption sites from other reactants, and the diffusion of hydrogen along the surface is fast. The model is also used to address the relevance of the ensemble effects for CO dissociation and the surface sensitivity of the CO hydrogenation reaction. Our simulation results imply that these aspects have little effect on the rates of hydrocarbon formation.Peer reviewe

    Silver Halide Colloid Precursors for the Synthesis of Monolayer-Protected Clusters

    No full text
    A new method for the synthesis of monolayer-protected silver clusters (MPCs) based on the two-phase reduction of a stable negatively charged silver bromide sol is described. Phase transfer of the colloid to toluene is accomplished using tetra-n-octylammonium bromide as the phase transfer reagent. The advantage of this synthesis is to uncouple the formation of the silver halide colloid from its transfer and reduction in the organic phase, thus allowing control over each reaction step. The silver colloid in toluene was reduced with aqueous borohydride in the presence of 4-bromobenzenethiol as the passivating agent. The UV-visible absorption spectra indicate the intermediate formation of Ag coreAgBr shell clusters during reduction. The resulting MPCs have been characterized by optical and transmission electron microscopy, energy-dispersive X-ray analysis, thermogravimetry, and UV-vis absorption spectroscopy. The formation of spiral cracks in the nanoparticulate agglomerates on solvent evaporation was observed. The spectra of thin films obtained by solvent evaporation have been analyzed using an effective medium theory
    corecore