4 research outputs found

    Research and innovation as a catalyst for food system transformation

    Get PDF
    Background: Food systems are associated with severe and persistent problems worldwide. Governance approaches aiming to foster sustainable transformation of food systems face several challenges due to the complex nature of food systems. Scope and approach: In this commentary we argue that addressing these governance challenges requires the development and adoption of novel research and innovation (R&I) approaches that will provide evidence to inform food system transformation and will serve as catalysts for change. We first elaborate on the complexity of food systems (transformation) and stress the need to move beyond traditional linear R&I approaches to be able to respond to persistent problems that affect food systems. Though integrated transdisciplinary approaches are promising, current R&I systems do not sufficiently support such endeavors. As such, we argue, we need strategies that trigger a double transformation - of food systems and of their R&I systems. Key Findings and Conclusions: Seizing the opportunities to transform R&I systems has implications for how research is done - pointing to the need for competence development among researchers, policy makers and society in general - and requires specific governance interventions that stimulate a systemic approach. Such interventions should foster transdisciplinary and transformative research agendas that stimulate portfolios of projects that will reinforce one another, and stimulate innovative experiments to shape conditions for systemic change. In short, a thorough rethinking of the role of R&I as well as how it is funded is a crucial step towards the development of the integrative policies that are necessary to engender systemic change - in the food system and beyond

    Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata

    No full text
    Uterine leiomyomata (UL) are the most common tumours of the female genital tract and the primary cause of surgical removal of the uterus. Genetic factors contribute to UL susceptibility. To add understanding to the heritable genetic risk factors, we conduct a genome-wide association study (GWAS) of UL in up to 426,558 European women from FinnGen and a previous UL meta-GWAS. In addition to the 50 known UL loci, we identify 22 loci that have not been associated with UL in prior studies. UL-associated loci harbour genes enriched for development, growth, and cellular senescence. Of particular interest are the smooth muscle cell differentiation and proliferation-regulating genes functioning on the myocardin-cyclin dependent kinase inhibitor 1A pathway. Our results further suggest that genetic predisposition to increased fat-free mass may be causally related to higher UL risk, underscoring the involvement of altered muscle tissue biology in UL pathophysiology. Overall, our findings add to the understanding of the genetic pathways underlying UL, which may aid in developing novel therapeutics.Peer reviewe

    Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata

    No full text
    corecore