26 research outputs found
New results on group classification of nonlinear diffusion-convection equations
Using a new method and additional (conditional and partial) equivalence
transformations, we performed group classification in a class of variable
coefficient -dimensional nonlinear diffusion-convection equations of the
general form We obtain new interesting cases of
such equations with the density localized in space, which have large
invariance algebra. Exact solutions of these equations are constructed. We also
consider the problem of investigation of the possible local trasformations for
an arbitrary pair of equations from the class under consideration, i.e. of
describing all the possible partial equivalence transformations in this class.Comment: LaTeX2e, 19 page
Group classification of heat conductivity equations with a nonlinear source
We suggest a systematic procedure for classifying partial differential
equations invariant with respect to low dimensional Lie algebras. This
procedure is a proper synthesis of the infinitesimal Lie's method, technique of
equivalence transformations and theory of classification of abstract low
dimensional Lie algebras. As an application, we consider the problem of
classifying heat conductivity equations in one variable with nonlinear
convection and source terms. We have derived a complete classification of
nonlinear equations of this type admitting nontrivial symmetry. It is shown
that there are three, seven, twenty eight and twelve inequivalent classes of
partial differential equations of the considered type that are invariant under
the one-, two-, three- and four-dimensional Lie algebras, correspondingly.
Furthermore, we prove that any partial differential equation belonging to the
class under study and admitting symmetry group of the dimension higher than
four is locally equivalent to a linear equation. This classification is
compared to existing group classifications of nonlinear heat conductivity
equations and one of the conclusions is that all of them can be obtained within
the framework of our approach. Furthermore, a number of new invariant equations
are constructed which have rich symmetry properties and, therefore, may be used
for mathematical modeling of, say, nonlinear heat transfer processes.Comment: LaTeX, 51 page
Symmetry classification of third-order nonlinear evolution equations. Part I: Semi-simple algebras
We give a complete point-symmetry classification of all third-order evolution
equations of the form
which admit semi-simple symmetry algebras and extensions of these semi-simple
Lie algebras by solvable Lie algebras. The methods we employ are extensions and
refinements of previous techniques which have been used in such
classifications.Comment: 53 page
Conservation laws for self-adjoint first order evolution equations
In this work we consider the problem on group classification and conservation
laws of the general first order evolution equations. We obtain the subclasses
of these general equations which are quasi-self-adjoint and self-adjoint. By
using the recent Ibragimov's Theorem on conservation laws, we establish the
conservation laws of the equations admiting self-adjoint equations. We
illustrate our results applying them to the inviscid Burgers' equation. In
particular an infinite number of new symmetries of these equations are found
and their corresponding conservation laws are established.Comment: This manuscript has been accepted for publication in Journal of
Nonlinear Mathematical Physic
Group Analysis of Variable Coefficient Diffusion-Convection Equations. I. Enhanced Group Classification
We discuss the classical statement of group classification problem and some
its extensions in the general case. After that, we carry out the complete
extended group classification for a class of (1+1)-dimensional nonlinear
diffusion--convection equations with coefficients depending on the space
variable. At first, we construct the usual equivalence group and the extended
one including transformations which are nonlocal with respect to arbitrary
elements. The extended equivalence group has interesting structure since it
contains a non-trivial subgroup of non-local gauge equivalence transformations.
The complete group classification of the class under consideration is carried
out with respect to the extended equivalence group and with respect to the set
of all point transformations. Usage of extended equivalence and correct choice
of gauges of arbitrary elements play the major role for simple and clear
formulation of the final results. The set of admissible transformations of this
class is preliminary investigated.Comment: 25 page
Realizations of Real Low-Dimensional Lie Algebras
Using a new powerful technique based on the notion of megaideal, we construct
a complete set of inequivalent realizations of real Lie algebras of dimension
no greater than four in vector fields on a space of an arbitrary (finite)
number of variables. Our classification amends and essentially generalizes
earlier works on the subject.
Known results on classification of low-dimensional real Lie algebras, their
automorphisms, differentiations, ideals, subalgebras and realizations are
reviewed.Comment: LaTeX2e, 39 pages. Essentially exetended version. Misprints in
Appendix are correcte
Projective analysis and preliminary group classification of the nonlinear fin equation
In this paper we investigate for further symmetry properties of the nonlinear
fin equations of the general form rather than recent
works on these equations. At first, we study the projective (fiber-preserving)
symmetry to show that equations of the above class can not be reduced to linear
equations. Then we determine an equivalence classification which admits an
extension by one dimension of the principal Lie algebra of the equation. The
invariant solutions of equivalence transformations and classification of
nonlinear fin equations among with additional operators are also given.Comment: 9 page
Conceptual design report for the LUXE experiment
This Conceptual Design Report describes LUXE (Laser Und XFEL Experiment), an experimental campaign that aims to combine the high-quality and high-energy electron beam of the European XFEL with a powerful laser to explore the uncharted terrain of quantum electrodynamics characterised by both high energy and high intensity. We will reach this hitherto inaccessible regime of quantum physics by analysing high-energy electron-photon and photon-photon interactions in the extreme environment provided by an intense laser focus. The physics background and its relevance are presented in the science case which in turn leads to, and justifies, the ensuing plan for all aspects of the experiment: Our choice of experimental parameters allows (i) field strengths to be probed where the coupling to charges becomes non-perturbative and (ii) a precision to be achieved that permits a detailed comparison of the measured data with calculations. In addition, the high photon flux predicted will enable a sensitive search for new physics beyond the Standard Model. The initial phase of the experiment will employ an existing 40 TW laser, whereas the second phase will utilise an upgraded laser power of 350 TW. All expectations regarding the performance of the experimental set-up as well as the expected physics results are based on detailed numerical simulations throughout