26 research outputs found

    New results on group classification of nonlinear diffusion-convection equations

    Full text link
    Using a new method and additional (conditional and partial) equivalence transformations, we performed group classification in a class of variable coefficient (1+1)(1+1)-dimensional nonlinear diffusion-convection equations of the general form f(x)ut=(D(u)ux)x+K(u)ux.f(x)u_t=(D(u)u_x)_x+K(u)u_x. We obtain new interesting cases of such equations with the density ff localized in space, which have large invariance algebra. Exact solutions of these equations are constructed. We also consider the problem of investigation of the possible local trasformations for an arbitrary pair of equations from the class under consideration, i.e. of describing all the possible partial equivalence transformations in this class.Comment: LaTeX2e, 19 page

    Group classification of heat conductivity equations with a nonlinear source

    Full text link
    We suggest a systematic procedure for classifying partial differential equations invariant with respect to low dimensional Lie algebras. This procedure is a proper synthesis of the infinitesimal Lie's method, technique of equivalence transformations and theory of classification of abstract low dimensional Lie algebras. As an application, we consider the problem of classifying heat conductivity equations in one variable with nonlinear convection and source terms. We have derived a complete classification of nonlinear equations of this type admitting nontrivial symmetry. It is shown that there are three, seven, twenty eight and twelve inequivalent classes of partial differential equations of the considered type that are invariant under the one-, two-, three- and four-dimensional Lie algebras, correspondingly. Furthermore, we prove that any partial differential equation belonging to the class under study and admitting symmetry group of the dimension higher than four is locally equivalent to a linear equation. This classification is compared to existing group classifications of nonlinear heat conductivity equations and one of the conclusions is that all of them can be obtained within the framework of our approach. Furthermore, a number of new invariant equations are constructed which have rich symmetry properties and, therefore, may be used for mathematical modeling of, say, nonlinear heat transfer processes.Comment: LaTeX, 51 page

    Symmetry classification of third-order nonlinear evolution equations. Part I: Semi-simple algebras

    Full text link
    We give a complete point-symmetry classification of all third-order evolution equations of the form ut=F(t,x,u,ux,uxx)uxxx+G(t,x,u,ux,uxx)u_t=F(t,x,u,u_x, u_{xx})u_{xxx}+G(t,x,u,u_x, u_{xx}) which admit semi-simple symmetry algebras and extensions of these semi-simple Lie algebras by solvable Lie algebras. The methods we employ are extensions and refinements of previous techniques which have been used in such classifications.Comment: 53 page

    Conservation laws for self-adjoint first order evolution equations

    Full text link
    In this work we consider the problem on group classification and conservation laws of the general first order evolution equations. We obtain the subclasses of these general equations which are quasi-self-adjoint and self-adjoint. By using the recent Ibragimov's Theorem on conservation laws, we establish the conservation laws of the equations admiting self-adjoint equations. We illustrate our results applying them to the inviscid Burgers' equation. In particular an infinite number of new symmetries of these equations are found and their corresponding conservation laws are established.Comment: This manuscript has been accepted for publication in Journal of Nonlinear Mathematical Physic

    Group Analysis of Variable Coefficient Diffusion-Convection Equations. I. Enhanced Group Classification

    Full text link
    We discuss the classical statement of group classification problem and some its extensions in the general case. After that, we carry out the complete extended group classification for a class of (1+1)-dimensional nonlinear diffusion--convection equations with coefficients depending on the space variable. At first, we construct the usual equivalence group and the extended one including transformations which are nonlocal with respect to arbitrary elements. The extended equivalence group has interesting structure since it contains a non-trivial subgroup of non-local gauge equivalence transformations. The complete group classification of the class under consideration is carried out with respect to the extended equivalence group and with respect to the set of all point transformations. Usage of extended equivalence and correct choice of gauges of arbitrary elements play the major role for simple and clear formulation of the final results. The set of admissible transformations of this class is preliminary investigated.Comment: 25 page

    Realizations of Real Low-Dimensional Lie Algebras

    Full text link
    Using a new powerful technique based on the notion of megaideal, we construct a complete set of inequivalent realizations of real Lie algebras of dimension no greater than four in vector fields on a space of an arbitrary (finite) number of variables. Our classification amends and essentially generalizes earlier works on the subject. Known results on classification of low-dimensional real Lie algebras, their automorphisms, differentiations, ideals, subalgebras and realizations are reviewed.Comment: LaTeX2e, 39 pages. Essentially exetended version. Misprints in Appendix are correcte

    Projective analysis and preliminary group classification of the nonlinear fin equation ut=(E(u)ux)x+h(x)uu_t=(E(u)u_x)_x + h(x)u

    Full text link
    In this paper we investigate for further symmetry properties of the nonlinear fin equations of the general form ut=(E(u)ux)x+h(x)uu_t=(E(u)u_x)_x + h(x)u rather than recent works on these equations. At first, we study the projective (fiber-preserving) symmetry to show that equations of the above class can not be reduced to linear equations. Then we determine an equivalence classification which admits an extension by one dimension of the principal Lie algebra of the equation. The invariant solutions of equivalence transformations and classification of nonlinear fin equations among with additional operators are also given.Comment: 9 page

    Conceptual design report for the LUXE experiment

    Get PDF
    This Conceptual Design Report describes LUXE (Laser Und XFEL Experiment), an experimental campaign that aims to combine the high-quality and high-energy electron beam of the European XFEL with a powerful laser to explore the uncharted terrain of quantum electrodynamics characterised by both high energy and high intensity. We will reach this hitherto inaccessible regime of quantum physics by analysing high-energy electron-photon and photon-photon interactions in the extreme environment provided by an intense laser focus. The physics background and its relevance are presented in the science case which in turn leads to, and justifies, the ensuing plan for all aspects of the experiment: Our choice of experimental parameters allows (i) field strengths to be probed where the coupling to charges becomes non-perturbative and (ii) a precision to be achieved that permits a detailed comparison of the measured data with calculations. In addition, the high photon flux predicted will enable a sensitive search for new physics beyond the Standard Model. The initial phase of the experiment will employ an existing 40 TW laser, whereas the second phase will utilise an upgraded laser power of 350 TW. All expectations regarding the performance of the experimental set-up as well as the expected physics results are based on detailed numerical simulations throughout
    corecore