Abstract

Using a new method and additional (conditional and partial) equivalence transformations, we performed group classification in a class of variable coefficient (1+1)(1+1)-dimensional nonlinear diffusion-convection equations of the general form f(x)ut=(D(u)ux)x+K(u)ux.f(x)u_t=(D(u)u_x)_x+K(u)u_x. We obtain new interesting cases of such equations with the density ff localized in space, which have large invariance algebra. Exact solutions of these equations are constructed. We also consider the problem of investigation of the possible local trasformations for an arbitrary pair of equations from the class under consideration, i.e. of describing all the possible partial equivalence transformations in this class.Comment: LaTeX2e, 19 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019