Abstract

We suggest a systematic procedure for classifying partial differential equations invariant with respect to low dimensional Lie algebras. This procedure is a proper synthesis of the infinitesimal Lie's method, technique of equivalence transformations and theory of classification of abstract low dimensional Lie algebras. As an application, we consider the problem of classifying heat conductivity equations in one variable with nonlinear convection and source terms. We have derived a complete classification of nonlinear equations of this type admitting nontrivial symmetry. It is shown that there are three, seven, twenty eight and twelve inequivalent classes of partial differential equations of the considered type that are invariant under the one-, two-, three- and four-dimensional Lie algebras, correspondingly. Furthermore, we prove that any partial differential equation belonging to the class under study and admitting symmetry group of the dimension higher than four is locally equivalent to a linear equation. This classification is compared to existing group classifications of nonlinear heat conductivity equations and one of the conclusions is that all of them can be obtained within the framework of our approach. Furthermore, a number of new invariant equations are constructed which have rich symmetry properties and, therefore, may be used for mathematical modeling of, say, nonlinear heat transfer processes.Comment: LaTeX, 51 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 16/03/2019