153 research outputs found

    Formal Verification of Infinite State Systems Using Boolean Methods

    Full text link

    The Efficiency of the Assay for Haemopietic Colony Forming Cells

    Get PDF
    The quantitative efficiency of the spleen colony assay in mice is discussed in the light of recent findings on the kinetics of colony forming cells. Arguments are presented showing that the f factor, the 2 hr CFU recovery fraction in the spleen, markedly over‐estimates the assay efficiency which is the ratio of the numbers of colony forming units and colony forming cells. Copyrigh

    Abstraction Refinement for Quantified Array Assertions

    Get PDF
    We present an abstraction refinement technique for the verification of universally quantified array assertions such as “all elements in the array are sorted”. Our technique can be seamlessly combined with existing software model checking algorithms. We implemented our technique in the ACSAR software model checker and successfully verified quantified array assertions for both text book examples and real-life examples taken from the Linux operating system kernel

    Singular Scaling Functions in Clustering Phenomena

    Full text link
    We study clustering in a stochastic system of particles sliding down a fluctuating surface in one and two dimensions. In steady state, the density-density correlation function is a scaling function of separation and system size.This scaling function is singular for small argument -- it exhibits a cusp singularity for particles with mutual exclusion, and a divergence for noninteracting particles. The steady state is characterized by giant fluctuations which do not damp down in the thermodynamic limit. The autocorrelation function is a singular scaling function of time and system size. The scaling properties are surprisingly similar to those for particles moving in a quenched disordered environment that results if the surface is frozen.Comment: 8 pages, 3 figures, Invited talk delivered at Statphys 23, Genova, July 200

    Current status of arsenic contamination in drinkingwater and treatment practice in some rural areas of West Bengal, India

    No full text
    The aim of the present investigation was to draw the current scenario of arsenic (As) contamination in drinking water of community tube well and drinking water treated by tube wells installed with different adsorbent media-based treatment plants in districts Nadia, Hooghly and North 24-Parganas districts, West Bengal, India. As removal efficiencies of different treatment plants varied from 23 to 71%, which is largely governed by adsorption capacity of adsorbent and influencing environmental factors. Though investigated treatment plants removed substantial amount of As from tube well water, high As concentration in treated drinking water was retained after passing through the treatment plants. This high level of As concentration in tube well water and retention of high As concentration in treated drinking water were severe for the consumers which therefore, indicating the improvement of removal efficiency of treatment plant by meticulously considering favorable influencing factors or/and application of other high capacity treatment alternatives to adsorb the excess As retained in drinking water and regular monitoring of As concentration in the treated drinking water are indispensable

    A Case of Problematic Diffusion

    Full text link
    Sex determination techniques have diffused rapidly in India, and are being used to detect female fetuses and subsequently to abort them. This technology has spread rapidly because it imparts knowledge that is of great value within the Indian context, and because it fits in neatly with the modernization dynamic within India, which itself has enmeshed with traditional patriarchal institutions to oppress Indian women. More research needs to be done on ways to stem the adoption of problematic innovations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68396/2/10.1177_107554709401500301.pd

    Handling Parameterized Systems with Non-atomic Global Conditions

    Full text link
    Abstract. We consider verification of safety properties for parameter-ized systems with linear topologies. A process in the system is an ex-tended automaton, where the transitions are guarded by both local and global conditions. The global conditions are non-atomic, i.e., a process allows arbitrary interleavings with other transitions while checking the states of all (or some) of the other processes. We translate the problem into model checking of infinite transition systems where each configura-tion is a labeled finite graph. We derive an over-approximation of the in-duced transition system, which leads to a symbolic scheme for analyzing safety properties. We have implemented a prototype and run it on several nontrivial case studies, namely non-atomic versions of Burn’s protocol, Dijkstra’s protocol, the Bakery algorithm, Lamport’s distributed mutual exclusion protocol, and a two-phase commit protocol used for handling transactions in distributed systems. As far as we know, these protocols have not previously been verified in a fully automated framework.

    Inferring Loop Invariants using Postconditions

    Full text link
    One of the obstacles in automatic program proving is to obtain suitable loop invariants. The invariant of a loop is a weakened form of its postcondition (the loop's goal, also known as its contract); the present work takes advantage of this observation by using the postcondition as the basis for invariant inference, using various heuristics such as "uncoupling" which prove useful in many important algorithms. Thanks to these heuristics, the technique is able to infer invariants for a large variety of loop examples. We present the theory behind the technique, its implementation (freely available for download and currently relying on Microsoft Research's Boogie tool), and the results obtained.Comment: Slightly revised versio
    corecore