145 research outputs found

    Meteoric phenomena in the earth's atmosphere. Investigations of meteors, no. 2

    Get PDF
    Meteoritic radiance and ionization observations in earth atmospher

    On inconsistency of experimental data on primary nuclei spectra with sea level muon intensity measurements

    Full text link
    For the first time a complete set of the most recent direct data on primary cosmic ray spectra is used as input into calculations of muon flux at sea level in wide energy range Eμ=13105E_\mu=1-3\cdot10^5 GeV. Computations have been performed with the CORSIKA/QGSJET and CORSIKA/VENUS codes. The comparison of the obtained muon intensity with the data of muon experiments shows, that measurements of primary nuclei spectra conform to sea level muon data only up to several tens of GeV and result in essential deficit of muons at higher energies. As it follows from our examination, uncertainties in muon flux measurements and in the description of nuclear cascades development are not suitable to explain this contradiction, and the only remaining factor, leading to this situation, is underestimation of primary light nuclei fluxes. We have considered systematic effects, that may distort the results of the primary cosmic ray measurements with the application of the emulsion chambers. We suggest, that re-examination of these measurements is required with the employment of different hadronic interaction models. Also, in our point of view, it is necessary to perform estimates of possible influence of the fact, that sizable fraction of events, identified as protons, actually are antiprotons. Study of these cosmic ray component begins to attract much attention, but today nothing definite is known for the energies >40>40 GeV. In any case, to realize whether the mentioned, or some other reasons are the sources of disagreement of the data on primaries with the data on muons, the indicated effects should be thoroughly analyzed

    Bluetooth Mesh under the Microscope: How much ICN is Inside?

    Full text link
    Bluetooth (BT) mesh is a new mode of BT operation for low-energy devices that offers group-based publish-subscribe as a network service with additional caching capabilities. These features resemble concepts of information-centric networking (ICN), and the analogy to ICN has been repeatedly drawn in the BT community. In this paper, we compare BT mesh with ICN both conceptually and in real-world experiments. We contrast both architectures and their design decisions in detail. Experiments are performed on an IoT testbed using NDN/CCNx and BT mesh on constrained RIOT nodes. Our findings indicate significant differences both in concepts and in real-world performance. Supported by new insights, we identify synergies and sketch a design of a BT-ICN that benefits from both worlds

    The enhancement of phase separation aspect in electron doped manganite Ca0.8Sm0.16Nd0.04MnO3

    Full text link
    The complex lanthanide doping of electron manganites results in enhancement of various phase separation effects in physical properties of these compounds. Selecting Ca0.8Sm0.16Nd0.04MnO3 as a model case we show that the first order structural phase transition from paramagnetic semi-metallic phase into anti-ferromagnetic semi-metallic phase at TS ~ 158 +- 4 K is marked by an abrupt decrease in magnetization, a step like anomaly DL/L = 10-4 in thermal expansion and large latent heat DQ = 610 J/mol. In a certain temperature range below TS, the high field magnetization exhibits hysteretic metamagnetic behavior due to field-induced first order transformation. ac-susceptibility, magnetization and resistivity data suggest rather a non-uniform state in Ca0.8Sm0.16Nd0.04MnO3 at low temperatures. The metal - insulator transition occurs at TMI ~112 +- 3 K, accompanied by a step-like increase in magnetization. These features could be ascribed to "sponging" of electrons from neighboring anti-ferromagnetic matrix by clusters undergoing the ferromagnetic ordering.Comment: submitted to J.Phys. Cond. Matte

    Trends in autoionization of Rydberg states converging to the 4s threshold in the Kr-Rb⁺-Sr²⁺ isoelectonic sequence: theory and experiment

    Get PDF
    We have measured the photoabsorption spectra of the Kr-like ions Rb+ and Sr2+ at photon energies corresponding to the excitation of 4s-np resonances using, the dual laser plasma photoabsorption technique. Dramatic changes in the line profiles, with increasing ionization and also proceeding along the Rydberg series of each ion, are observed and explained by the trends in 4s-transition amplitudes computed within a framework of configuration-interaction Pauli-Fock calculations. Total photoionization cross sections show very good agreement with relative absorption data extracted from the measured spectra

    Design and construction of new central and forward muon counters for CDF II

    Full text link
    New scintillation counters have been designed and constructed for the CDF upgrade in order to complete the muon coverage of the central CDF detector, and to extend this coverage to larger pseudorapidity. A novel light collection technique using wavelength shifting fibers, together with high quality polystyrene-based scintillator resulted in compact counters with good and stable light collection efficiency over lengths extending up to 320 cm. Their design and construction is described and results of their initial performance are reported.Comment: 20 pages, 15 figure

    Measuring extensive air showers with Cherenkov light detectors of the Yakutsk array: The energy spectrum of cosmic rays

    Full text link
    The energy spectrum of cosmic rays in the range 10^15 eV to 6*10^19 eV has been studied using the air Cherenkov light detectors of the Yakutsk array. The total flux of photons produced by relativistic electrons (including positrons as well, hereafter) of extensive air showers in the atmosphere is used as the energy estimator of the primary particle initiating a shower. The resultant differential flux of cosmic rays exhibits, in accordance with previous measurements, a knee and ankle features at energies 3*10^15 and ~10^19 eV, respectively. A comparison of observational data with simulations is made in the knee and ankle regions in order to choose the models of galactic and extragalactic components of cosmic rays which describe better the energy spectrum measured.Comment: 27 pages, 22 figures, accepted for publication in New Journal of Physics (Focus Issue

    A study on the sharp knee and fine structures of cosmic ray spectra

    Full text link
    The paper investigates the overall and detailed features of cosmic ray (CR) spectra in the knee region using the scenario of nuclei-photon interactions around the acceleration sources. Young supernova remnants can be the physical realities of such kind of CR acceleration sites. The results show that the model can well explain the following problems simultaneously with one set of source parameters: the knee of CR spectra and the sharpness of the knee, the detailed irregular structures of CR spectra, the so-called "component B" of Galactic CRs, and the electron/positron excesses reported by recent observations. The coherent explanation serves as evidence that at least a portion of CRs might be accelerated at the sources similar to young supernova remnants, and one set of source parameters indicates that this portion mainly comes from standard sources or from a single source.Comment: 13 pages, 4 figures, accepted for publication in SCIENCE CHINA Physics, Mechanics & Astronomy
    corecore