15 research outputs found

    Change of cobalt magnetic anisotropy and spin polarization with alkanethiolates self-assembled monolayers

    Get PDF
    International audience; We demonstrate that the deposition of a self-assembled monolayer of alkanethiolates on a 1 nm thick cobalt ultrathin film grown on Au(111) induces a spin reorientation transition from in-plane to out-of-plane magnetization. Using ab initio calculations, we show that a methanethiolate layer changes slightly both the magnetocrystalline and shape anisotropy, both effects almost cancelling each other out for a 1 nm Co film. Finally, the change in hysteresis cycles upon alkanethiolate adsorption could be assigned to a molecular-induced roughening of the Co layer, as shown by STM. In addition, we calculate how a methanethiolate layer modifies the spin density of states of the Co layer and we show that the spin polarization at the Fermi level through the organic layer is reversed as compared to the uncovered Co. These results give new theoretical and experimental insights for the use of thiol-based self-assembled monolayers in spintronic devices

    Giant tunnel-electron injection in nitrogen-doped graphene

    Get PDF
    International audienceScanning tunneling microscopy experiments have been performed to measure the local electron injection in nitrogen-doped graphene on SiC(000¯1) and were successfully compared to ab initio calculations. In graphene, a gaplike feature is measured around the Fermi level due to a phonon-mediated tunneling channel. At nitrogen sites, this feature vanishes due to an increase of the elastic channel that is allowed because of symmetry breaking induced by the nitrogen atoms. A large conductance enhancement by a factor of up to 500 was measured at the Fermi level by comparing local spectroscopy at nitrogen sites and at carbon sites. Nitrogen doping can therefore be proposed as a way to improve tunnel-electron injection in graphene

    SPATIAL REPARTITION OF CURRENT FLUCTUATIONS IN A SCANNING TUNNELING MICROSCOPE

    No full text
    Scanning Tunneling Microscopy (STM) is a technique where the surface topography of a conducting sample is probed by a scanning metallic tip. The tip-to-surface distance is controlled by monitoring the electronic tunneling current between the two metals. The aim of this work is to extend the temporal range of this instrument by characterising the time fluctuations of this current on different surfaces. The current noise power spectral density is dominated by a characteristic 1/f component, the physical origin of which is not yet clearly identified, despite a number of investigations. A new I-V preamplifier was developed in order to characterise these fluctuations of the tunnelling current and to obtain images of their spatial repartition. It is observed that their intensity is correlated with some topographical features. This information can be used to get insights on the physical phenomena involved that are not accessible by the usual STM set-up, which is limited to low frequencies

    Spin-polarized surface states on Fe-deposited Au(111) surface: A theoretical study

    No full text
    We have studied electronic structure of Fe-deposited Au(111) by performing ab initio density functional theory calculations. We find that the magnetic moment on the deposited Fe layer is enhanced as compared to that in bulk iron. We observe a large number of new states on the Fe-deposited surface - one of which is in the majority spin channel having similar dispersion to that on the clean surface, and others in the minority spin channel. The effective mass of electrons in surface states near the Fermi level increases on Fe deposition. The electronic properties are found to be insensitive to the stacking of near-surface layers. We need to use very thick slabs in our calculations to avoid splitting of surface states due to spurious interactions between the two surfaces of the slab. Using the local density of states profiles for different surface states, we conclude that in scanning tunneling microscope experiments one can detect two of the surface states - one in the majority channel below the Fermi level, and another in the minority channel appearing just above the Fermi energy. We compare our results to those from scanning tunneling spectroscopy experiments. (C) 2012 Elsevier B.V. All rights reserved

    Electronic Interaction between Nitrogen-Doped Graphene and Porphyrin Molecules

    No full text
    The chemical doping of graphene is a promising route to improve the performances of graphene-based devices through enhanced chemical reactivity, catalytic activity, or transport characteristics. Understanding the interaction of molecules with doped graphene at the atomic scale is therefore a leading challenge to be overcome for the development of graphene-based electronics and sensors. Here, we use scanning tunneling microscopy and spectroscopy to study the electronic interaction of pristine and nitrogen-doped graphene with self-assembled tetraphenylporphyrin molecules. We provide an extensive measurement of the electronic structure of single porphyrins on Au(111), thus revealing an electronic decoupling effect of the porphyrins adsorbed on graphene. A tip-induced switching of the inner hydrogen atoms of porphyrins, first identified on Au(111), is observed on graphene, allowing the identification of the molecular conformation of porphyrins in the self-assembled molecular layer. On nitrogen-doped graphene, a local modification of the charge transfer around the nitrogen sites is evidenced via a downshift of the energies of the molecular elecronic states. These data show how the presence of nitrogen atoms in the graphene network modifies the electronic interaction of organic molecules with graphene. These results provide a basic understanding for the exploitation of doped graphene in molecular sensors or nanoelectronics

    Control of Molecule–Metal Interaction by Hydrogen Manipulation in an Organic Molecule

    No full text
    International audienceFree-base porphyrin molecules offer appealing options to tune theinteraction with their environment via the manipulation of their inner hydrogen atomsand molecular conformation. Using scanning tunneling microscopy we show, through asystematic study, that the molecular conformation, electronic gap, wave function, andmolecule−substrate interaction are modified by hydrogen switch or removal.Experimental results in combination with ab initio calculations provide an understandingof the underlying physical process

    C<sub>60</sub> as an Atom Trap to Capture Co Adatoms

    Get PDF
    International audienceC60_{60} molecules were used to trap Co adatoms and clusters on a Au(111) surface using atomic/molecular manipulation with a scanning tunneling microscope. Two manipulation pathways (successive integration of single Co atoms in one molecule or direct integration of a Co cluster) were found to efficiently allow the formation of complexes mixing a C60_{60} molecule with Co atoms. Scanning tunneling spectroscopy reveals the robustness of the π states of C60_{60} that are preserved after Co trapping. Scanning tunneling microscopy images and density functional theory calculations reveal that dissociated Co clusters of up to nine atoms can be formed at the molecule−substrate interface. These results open new perspectives in the interactions between metal adatoms and molecules, for applications in metal−organic devices

    Molecular adsorbates as probes of the local properties of doped graphene

    No full text
    Graphene-based sensors are among the most promising of graphene's applications. The ability to signal the presence of molecular species adsorbed on this atomically thin substrate has been explored from electric measurements to light scattering. Here we show that the adsorbed molecules can be used to sense graphene properties. The interaction of porphyrin molecules with nitrogen-doped graphene has been investigated using scanning tunneling microscopy and ab initio calculations. Molecular manipulation was used to reveal the surface below the adsorbed molecules allowing to achieve an atomic-scale measure of the interaction of molecules with doped graphene. The adsorbate's frontier electronic states are downshifted in energy as the molecule approaches the doping site, with largest effect when the molecule sits over the nitrogen dopant. Theoretical calculations showed that, due to graphene's high polarizability, the adsorption of porphyrin induces a charge rearrangement on the substrate similar to the image charges on a metal. This charge polarization is enhanced around nitrogen site, leading to an increased interaction of molecules with their image charges on graphene. Consequently, the molecular states are stabilized and shift to lower energies. These findings reveal the local variation of polarizability induced by nitrogen dopant opening new routes towards the electronic tuning of graphene
    corecore