283 research outputs found

    MODULATION OF THE CGMP-GATED CHANNEL BY CALCIUM

    Get PDF
    Calcium acting through calmodulin has been shown to regulate the affinity of cyclic nucleotide-gated channels expressed in cell lines. But is calmodulin the Ca-sensor that normally regulates these channels

    Models of probabilistic category learning in Parkinson's disease: Strategy use and the effects of L-dopa

    Get PDF
    Probabilistic category learning (PCL) has become an increasingly popular paradigm to study the brain bases of learning and memory. It has been argued that PCL relies on procedural habit learning, which is impaired in Parkinson's disease (PD). However, as PD patients were typically tested under medication, it is possible that levodopa (L-dopa) caused impaired performance in PCL. We present formal models of rule-based strategy switching in PCL, to re-analyse the data from [Jahanshahi, M., Wilkinson, L, Gahir, H., Dharminda, A., & Lagnado, D.A., (2009). Medication impairs probabilistic classification learning in Parkinson's disease. Manuscript submitted for publication] comparing PD patients on and off medication (within subjects) to matched controls. Our analysis shows that PD patients followed a similar strategy switch process as controls when off medication, but not when on medication. On medication, PD patients mainly followed a random guessing strategy, with only few switching to the better Single Cue strategies. PD patients on medication and controls made more use of the optimal Multi-Cue strategy. In addition, while controls and PD patients off medication only switched to strategies which did not decrease performance, strategy switches of PD patients on medication were not always directed as such. Finally, results indicated that PD patients on medication responded according to a probability matching strategy indicative of associative learning, while the behaviour of PD patients off medication and controls was consistent with a rule-based hypothesis testing procedure. (C) 2009 Elsevier Inc. All rights reserved

    Causal judgments about atypical actions are influenced by agents' epistemic states

    Get PDF
    A prominent finding in causal cognition research is people’s tendency to attribute increased causality to atypical actions. If two agents jointly cause an outcome (conjunctive causation), but differ in how frequently they have performed the causal action before, people judge the atypically acting agent to have caused the outcome to a greater extent. In this paper, we argue that it is the epistemic state of an abnormally acting agent, rather than the abnormality of their action, that is driving people's causal judgments. Given the predictability of the normally acting agent's behaviour, the abnormal agent is in a better position to foresee the consequences of their action. We put this hypothesis to test in four experiments. In Experiment 1, we show that people judge the atypical agent as more causal than the normally acting agent, but also judge the atypical agent to have an epistemic advantage. In Experiment 2, we find that people do not judge a causal difference if no epistemic advantage for the abnormal agent arises. In Experiment 3, we replicate these findings in a scenario in which the abnormal agent's epistemic advantage generalises to a novel context. In Experiment 4, we extend these findings to mental states more broadly construed and develop a Bayesian network model that predicts the degree of outcome-oriented mental states based on action normality and epistemic states. We find that people infer mental states like desire and intention to a greater extent from abnormal behaviour when this behaviour is accompanied by an epistemic advantage. We discuss these results in light of current theories and research on people's preference for abnormal causes

    Ranking the Impact of Different Tests on a Hypothesis in a Bayesian Network

    Get PDF
    Testing of evidence in criminal cases can be limited by temporal or financial constraints or by the fact that certain tests may be mutually exclusive, so choosing the tests that will have maximal impact on the final result is essential. In this paper, we assume that a main hypothesis, evidence for it and possible tests for existence of this evidence are represented in the form of a Bayesian network, and use three different methods to measure the impact of a test on the main hypothesis. We illustrate the methods by applying them to an actual digital crime case provided by the Hong Kong police. We conclude that the Kullback-Leibler divergence is the optimal method for selecting the tests with the highest impact

    Formalizing Neurath's ship:Approximate algorithms for online causal learning

    Get PDF
    Higher-level cognition depends on the ability to learn models of the world. We can characterize this at the computational level as a structure-learning problem with the goal of best identifying the prevailing causal relationships among a set of relata. However, the computational cost of performing exact Bayesian inference over causal models grows rapidly as the number of relata increases. This implies that the cognitive processes underlying causal learning must be substantially approximate. A powerful class of approximations that focuses on the sequential absorption of successive inputs is captured by the Neurath's ship metaphor in philosophy of science, where theory change is cast as a stochastic and gradual process shaped as much by people's limited willingness to abandon their current theory when considering alternatives as by the ground truth they hope to approach. Inspired by this metaphor and by algorithms for approximating Bayesian inference in machine learning, we propose an algorithmic-level model of causal structure learning under which learners represent only a single global hypothesis that they update locally as they gather evidence. We propose a related scheme for understanding how, under these limitations, learners choose informative interventions that manipulate the causal system to help elucidate its workings. We find support for our approach in the analysis of four experiments

    Endophilin drives the fast mode of vesicle retrieval in a ribbon synapse

    Get PDF
    Compensatory endocytosis of exocytosed membrane and recycling of synaptic vesicle components is essential for sustained synaptic transmission at nerve terminals. At the ribbon-type synapse of retinal bipolar cells, manipulations expected to inhibit the interactions of the clathrin adaptor protein complex (AP2) affect only the slow phase of endocytosis (Ï„ = 10-15 s), leading to the conclusion that fast endocytosis (Ï„ = 1-2 s) occurs by a mechanism that differs from the classical pathway of clathrin-coated vesicle retrieval from the plasma membrane. Here we investigate the role of endophilin in endocytosis at this ribbon synapse. Endophilin A1 is a synaptically enriched N-BAR domain-containing protein, suggested to function in clathrin-mediated endocytosis. Internal dialysis of the synaptic terminal with dominant-negative endophilin A1 lacking its linker and Src homology 3 (SH3) domain inhibited the fast mode of endocytosis, while slow endocytosis continued. Dialysis of a peptide that binds endophilin SH3 domain also decreased fast retrieval. Electron microscopy indicated that fast endocytosis occurred by retrieval of small vesicles in most instances. These results indicate that endophilin is involved in fast retrieval of synaptic vesicles occurring by a mechanism that can be distinguished from the classical pathway involving clathrin-AP2 interactions

    Fast and reliable pricing of American options with local volatility

    Get PDF
    We present globally convergent multigrid methods for the nonsymmetric obstacle problems as arising from the discretization of Black—Scholes models of American options with local volatilities and discrete data. No tuning or regularization parameters occur. Our approach relies on symmetrization by transformation and data recovery by superconvergence

    Synaptic convergence patterns onto retinal ganglion cells are preserved despite topographic variation in pre- and postsynaptic territories

    Get PDF
    Sensory processing can be tuned by a neuron’s integration area, the types of inputs, and the proportion and number of connections with those inputs. Integration areas often vary topographically to sample space differentially across regions. Here, we highlight two visual circuits in which topographic changes in the postsynaptic retinal ganglion cell (RGC) dendritic territories and their presynaptic bipolar cell (BC) axonal territories are either matched or unmatched. Despite this difference, in both circuits, the proportion of inputs from each BC type, i.e., synaptic convergence between specific BCs and RGCs, remained constant across varying dendritic territory sizes. Furthermore, synapse density between BCs and RGCs was invariant across topography. Our results demonstrate a wiring design, likely engaging homotypic axonal tiling of BCs, that ensures consistency in synaptic convergence between specific BC types onto their target RGCs while enabling independent regulation of pre- and postsynaptic territory sizes and synapse number between cell pairs
    • …
    corecore