9 research outputs found

    Epigenetics in Male Infertility

    Get PDF
    Male infertility is a complex medical condition, in which epigenetic factors play an important role. Epigenetics has recently gained significant scientific attention since it has added a new dimension to genomic and proteomic research. As a mechanism for maintaining genomic integrity and controlling gene expression, epigenetic modifications hold a great promise in capturing the subtle, yet very important, regulatory elements that might drive normal and abnormal sperm functions. The sperm’s epigenome is known to be marked by constant changing over spermatogenesis, which is highly susceptible to be influenced by a wide spectrum of environmental stimuli. Recently, epigenetic aberrations have been recognized as one of the causes of idiopathic male infertility. Recent advances in technology have enabled humans to study epigenetics role in male infertility

    Integration of genome-level data to allow identification of subtype-specific vulnerability genes as novel therapeutic targets

    Get PDF
    The identification of cancer-specific vulnerability genes is one of the most promising approaches for developing more effective and less toxic cancer treatments. Cancer genomes exhibit thousands of changes in DNA methylation and gene expression, with the vast majority likely to be passenger changes. We hypothesised that, through integration of genome-wide DNA methylation/expression data, we could exploit this inherent variability to identify cancer subtype-specific vulnerability genes that would represent novel therapeutic targets that could allow cancer-specific cell killing. We developed a bioinformatics pipeline integrating genome-wide DNA methylation/gene expression data to identify candidate subtype-specific vulnerability partner genes for the genetic drivers of individual genetic/molecular subtypes. Using acute lymphoblastic leukaemia as an initial model, 21 candidate subtype-specific vulnerability genes were identified across the five common genetic subtypes, with at least one per subtype. To confirm the approach was applicable across cancer types, we also assessed medulloblastoma, identifying 15 candidate subtype-specific vulnerability genes across three of four established subtypes. Almost all identified genes had not previously been implicated in these diseases. Functional analysis of seven candidate subtype-specific vulnerability genes across the two tumour types confirmed that siRNA-mediated knockdown induced significant inhibition of proliferation/induction of apoptosis, which was specific to the cancer subtype in which the gene was predicted to be specifically lethal. Thus, we present a novel approach that integrates genome-wide DNA methylation/expression data to identify cancer subtype-specific vulnerability genes as novel therapeutic targets. We demonstrate this approach is applicable to multiple cancer types and identifies true functional subtype-specific vulnerability genes with high efficiency

    Hexahydro-1,2,3-triazine Derivatives: Synthesis, Antimicrobial Evaluation, Antibiofilm Activity and Study of Molecular Docking Against Glucosamine-6-Phosphate

    Get PDF
    The N,N',N''-trisubstituted hexahydro-1,3,5-triazine derivatives (3a–g) had been created and identified through infrared, nuclear magnetic resonance, and mass spectrometry according to their symmetric basic structure. Three molecules of diverse aromatic amines and three molecules of formaldehyde were assembled in a "1+1+1+1+1+1" condensation reaction to produce hexahydrotriazines. Two Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis) and two Gram-negative (Klebsiella pneumonia, Pseudomonas aeruginosa) bacteria were used to evaluate the antimicrobial activity of the produced compounds. The anti-biofilm activity of 3g against S. aureus was also examined. In this investigation, glucosamine-6-phosphate synthase was employed to investigate the binding affinity of 3g within the enzyme's binding site. The results demonstrated that most of the synthesized hexahydro-1,3,5-triazine compounds have mild antimicrobial effects in comparison with the commonly used drug ampicillin, whereas the compounds 3g are potentially anti-biofilm agents. Molecular docking with the Autodock 4.2 tool was applied to study the binding affinity. It was found to hit (3g) in the active center of glucosamine-6-phosphate synthase as the target enzyme for antimicrobial agents. In silico studies reveal that the discovered hit is a promising glucosamine-6-phosphate inhibitor, as well as that the docking data matched up to the in vitro assay

    The effect of exposure to low-dose ionizing radiation on DNA methylation and relation to genomic stability: Review article

    No full text
    Ionizing radiation is one of the toxic and carcinogenic factors that potentially have direct and indirect long-term effects that are depending on the amount of doses and periods of exposure to radiation. These risks can appear in the form of changes in gene expression due to the influence of epigenetic mechanisms, especially DNA methylation. Exposure of DNA methylation to ionizing radiation for long periods of time can lead to genetic instability, which can be passed down through generations. In this review will. The aim of this study is to shine new light on these debates through an examination of

    The association between plasma IL-6 levels and several thalassemia-related clinical features in Iraqi patients

    No full text
    The present study was set to investigate the potential association between the level of Interleukin-6 (IL-6), as a key component of the pro-inflammatory response, with different thalassemia’s biological and clinical features. For this purpose, one hundred fifty blood samples were collected from 100 beta-thalassemia patients, who attended the Genetic Hematology Centre at Ibn Al- Baladi Hospital in Baghdad, Iraq, and 50 healthy subjects who were employed as a control group. IL-6 levels were estimated using an ELISA Kit, whereas other thalassemia-related clinical features (such as HbA, HbF, ferritin, blood transfusions, splenectomy status, and the history of frequent infection) were additionally assessed. The results of the present study showed a significant elevation (P≤0.01) in the levels of IL-6 in thalassemia patients as compared to healthy controls (57.7763± 8.94837 vs.  6.3059± 1.90364 pg/ml, respectively). Furthermore, IL-6 plasma levels seem to be influenced by the number of multiple scheduled blood transfusions, with the higher IL-6 mean level corresponding to the more frequent transfusions. Also, splenectomized thalassemia patients showed significantly higher IL-6 levels than those of non-splenectomized patients (61.2687±9.30688 vs. 56.9571±8.71926 pg/ml, respectively)

    Epigenome-wide analysis reveals functional modulators of drug sensitivity and post-treatment survival in chronic lymphocytic leukaemia

    Get PDF
    BACKGROUND: Chronic lymphocytic leukaemia (CLL) patients display a highly variable clinical course, with progressive acquisition of drug resistance. We sought to identify aberrant epigenetic traits that are enriched following exposure to treatment that could impact patient response to therapy. METHODS: Epigenome-wide analysis of DNA methylation was performed for 20 patients at two time-points during treatment. The prognostic significance of differentially methylated regions (DMRs) was assessed in independent cohorts of 139 and 163 patients. Their functional role in drug sensitivity was assessed in vitro. RESULTS: We identified 490 DMRs following exposure to therapy, of which 31 were CLL- specific and independent of changes occurring in normal B-cell development. Seventeen DMR-associated genes were identified as differentially expressed following treatment in an independent cohort. Methylation of the HOXA4, MAFB and SLCO3A1 DMRs were associated with post-treatment patient survival, with HOXA4 displaying the strongest association. Re-expression of HOXA4 in cell lines and primary CLL cells significantly increased apoptosis in response to treatment with fludarabine, ibrutinib and idelalisib. CONCLUSION: Our study demonstrates enrichment for multiple CLL-specific epigenetic traits in response to chemotherapy that predict patient outcomes, and particularly implicate epigenetic silencing of HOXA4 in reducing the sensitivity of CLL cells to therapy

    Citation: Epigenetic landscape correlates with genetic subtype but does not predict outcome in childhood acute lymphoblastic leukemia

    No full text
    Epigenetic landscape correlates with genetic subtype but does not predict outcome in childhood acute lymphoblastic leukemia. Epigenetics, 10 (8 Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.) Although children with acute lymphoblastic leukemia (ALL) generally have a good outcome, some patients do relapse and survival following relapse is poor. Altered DNA methylation is highly prevalent in ALL and raises the possibility that DNA methylation-based biomarkers could predict patient outcome. In this study, genome-wide methylation analysis, using the Illumina Infinium HumanMethylation450 BeadChip platform, was carried out on 52 diagnostic patient samples from 4 genetic subtypes [ETV6-RUNX1, high hyperdiploidy (HeH), TCF3-PBX1 and dic(9;20) (p11-13;q11)] in a 1:1 case-control design with patients who went on to relapse (as cases) and patients achieving longterm remission (as controls). Pyrosequencing assays for selected loci were used to confirm the array-generated data. Non-negative matrix factorization consensus clustering readily clustered samples according to genetic subgroups and gene enrichment pathway analysis suggested that this is in part driven by epigenetic disruption of subtype specific signaling pathways. Multiple bioinformatics approaches (including bump hunting and individual locus analysis) were used to identify CpG sites or regions associated with outcome. However, no associations with relapse were identified. Our data revealed that ETV6-RUNX1 and dic(9;20) subtypes were mostly associated with hypermethylation; conversely, TCF3-PBX1 and HeH were associated with hypomethylation. We observed significant enrichment of the neuroactive ligand-receptor interaction pathway in TCF3-PBX1 as well as an enrichment of genes involved in immunity and infection pathways in ETV6-RUNX1 subtype. Taken together, our results suggest that altered DNA methylation may have differential impacts in distinct ALL genetic subtypes

    Epigenetic landscape correlates with genetic subtype but does not predict outcome in childhood acute lymphoblastic leukemia.

    Get PDF
    Although children with acute lymphoblastic leukemia (ALL) generally have a good outcome, some patients do relapse and survival following relapse is poor. Altered DNA methylation is highly prevalent in ALL and raises the possibility that DNA methylation-based biomarkers could predict patient outcome. In this study, genome-wide methylation analysis, using the Illumina Infinium HumanMethylation450 BeadChip platform, was carried out on 52 diagnostic patient samples from 4 genetic subtypes [ETV6-RUNX1, high hyperdiploidy (HeH), TCF3-PBX1 and dic(9;20)(p11–13;q11)] in a 1:1 case-control design with patients who went on to relapse (as cases) and patients achieving long-term remission (as controls). Pyrosequencing assays for selected loci were used to confirm the array-generated data. Non-negative matrix factorization consensus clustering readily clustered samples according to genetic subgroups and gene enrichment pathway analysis suggested that this is in part driven by epigenetic disruption of subtype specific signaling pathways. Multiple bioinformatics approaches (including bump hunting and individual locus analysis) were used to identify CpG sites or regions associated with outcome. However, no associations with relapse were identified. Our data revealed that ETV6-RUNX1 and dic(9;20) subtypes were mostly associated with hypermethylation; conversely, TCF3-PBX1 and HeH were associated with hypomethylation. We observed significant enrichment of the neuroactive ligand-receptor interaction pathway in TCF3-PBX1 as well as an enrichment of genes involved in immunity and infection pathways in ETV6-RUNX1 subtype. Taken together, our results suggest that altered DNA methylation may have differential impacts in distinct ALL genetic subtypes
    corecore