86 research outputs found
LO-phonon assisted polariton lasing in a ZnO based microcavity
Polariton relaxation mechanisms are analysed experimentally and theoretically
in a ZnO-based polariton laser. A minimum lasing threshold is obtained when the
energy difference between the exciton reservoir and the bottom of the lower
polariton branch is resonant with the LO phonon energy. Tuning off this
resonance increases the threshold, and exciton-exciton scattering processes
become involved in the polariton relaxation. These observations are
qualitatively reproduced by simulations based on the numerical solution of the
semi-classical Boltzmann equations
Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO3/SrTiO3 devices
The recent development in the fabrication of artificial oxide
heterostructures opens new avenues in the field of quantum materials by
enabling the manipulation of the charge, spin and orbital degrees of freedom.
In this context, the discovery of two-dimensional electron gases (2-DEGs) at
LAlO3/SrTiO3 interfaces, which exhibit both superconductivity and strong Rashba
spin-orbit coupling (SOC), represents a major breakthrough. Here, we report on
the realisation of a field-effect LaAlO3/SrTiO3 device, whose physical
properties, including superconductivity and SOC, can be tuned over a wide range
by a top-gate voltage. We derive a phase diagram, which emphasises a
field-effect-induced superconductor-to-insulator quantum phase transition.
Magneto-transport measurements indicate that the Rashba coupling constant
increases linearly with electrostatic doping. Our results pave the way for the
realisation of mesoscopic devices, where these two properties can be
manipulated on a local scale by means of top-gates
Patterned silicon substrates: a common platform for room temperature GaN and ZnO polariton lasers
A new platform for fabricating polariton lasers operating at room temperature
is introduced: nitride-based distributed Bragg reflectors epitaxially grown on
patterned silicon substrates. The patterning allows for an enhanced strain
relaxation thereby enabling to stack a large number of crack-free AlN/AlGaN
pairs and achieve cavity quality factors of several thousands with a large
spatial homogeneity. GaN and ZnO active regions are epitaxially grown thereon
and the cavities are completed with top dielectric Bragg reflectors. The two
structures display strong-coupling and polariton lasing at room temperature and
constitute an intermediate step in the way towards integrated polariton
devices
X-ray photodesorption of complex organic molecules in protoplanetary disks -- I. Acetonitrile CH3CN
X-rays emitted from pre-main-sequence stars at the center of protoplanetary
disks can induce nonthermal desorption from interstellar ices populating the
cold regions. This X-ray photodesorption needs to be quantified for complex
organic molecules (COMs), including acetonitrile CH3CN, which has been detected
in several disks. We experimentally estimate the X-ray photodesorption yields
of neutral species from pure CH3CN ices and from interstellar ice analogs for
which CH3CN is mixed either in a CO- or H2O-dominated ice. The ices were
irradiated at 15 K by soft X-rays (400-600 eV) from synchrotron light (SOLEIL
synchrotron). X-ray photodesorption was probed in the gas phase via quadrupole
mass spectrometry. X-ray photodesorption yields were derived from the mass
signals and were extrapolated to higher X-ray energies for astrochemical
models. X-ray photodesorption of the intact CH3CN is detected from pure CH3CN
ices and from mixed 13CO:CH3CN ices, with a yield of about 5x10^(-4)
molecules/photon at 560 eV. When mixed in H2O-dominated ices, X-ray
photodesorption of the intact CH3CN at 560 eV is below its detection limit,
which is 10^(-4) molecules/photon. Yields associated with the desorption of
HCN, CH4 , and CH3 are also provided. The derived astrophysical yields
significantly depend on the local conditions expected in protoplanetary disks.
They vary from 10^(-4) to 10(-6) molecules/photon for the X-ray photodesorption
of intact CH3CN from CO-dominated ices. Only upper limits varying from
5x10^(-5) to 5x10^(-7) molecules/photon could be derived for the X-ray
photodesorption of intact CH3CN from H2O-dominated ices. X-ray photodesorption
of intact CH3CN from interstellar ices might in part explain the abundances of
CH3CN observed in protoplanetary disks. The desorption efficiency is expected
to vary with the local physical conditions, hence with the disk region
Quartic scaling of sound attenuation with frequency in vitreous silica
Several theoretical approaches to disordered media predict that acoustic
waves should undergo a quartic increase in their attenuation coefficient with
increasing frequency in the sub-terahertz region. Such Rayleigh-type scattering
would be related to the anomalous low-temperature plateau in the thermal
conductivity and to the so-called boson peak, i.e. an excess of vibrational
modes above the Debye density of states at around 1 THz. Brillouin scattering
of light allows the measurement of sound absorption and velocity dispersion up
to about 0.1 THz while inelastic x-ray scattering is limited to frequencies
larger than about 1 THz. We take advantage of the advent of ultrafast optical
techniques to explore the acoustical properties of amorphous SiO2 layers in the
difficult but crucial frequency region within this gap. A quartic scaling law
with frequency is clearly revealed between 0.2 and 0.9 THz, which is further
shown to be independent of temperature. This strongly damped regime is
accompanied by a decrease in the sound velocity already starting from about 0.5
THz, in line with theories. Our study assists to clarify the anomalous
acoustical properties in glasses at frequencies entering the boson peak region.Comment: 4 figures, 11 page
Intersubband Polariton-Polariton Scattering in a Dispersive Microcavity
The ultrafast scattering dynamics of intersubband polaritons in dispersive
cavities embedding GaAs/AlGaAs quantum wells are studied directly within their
band structure using a non-collinear pump-probe geometry with phase-stable
mid-infrared pulses. Selective excitation of the lower polariton at a frequency
of ~25 THz and at a finite in-plane momentum, , leads to the emergence
of a narrowband maximum in the probe reflectivity at . A quantum
mechanical model identifies the underlying microscopic process as stimulated
coherent polariton-polariton scattering. These results mark an important
milestone towards quantum control and bosonic lasing in custom-tailored
polaritonic systems in the mid and far-infrared
Rad51 Polymerization Reveals a New Chromatin Remodeling Mechanism
Rad51 protein is a well known protagonist of homologous recombination in eukaryotic cells. Rad51 polymerization on single-stranded DNA and its role in presynaptic filament formation have been extensively documented. Rad51 polymerizes also on double-stranded DNA but the significance of this filament formation remains unclear. We explored the behavior of Saccharomyces cerevisiae Rad51 on dsDNA and the influence of nucleosomes on Rad51 polymerization mechanism to investigate its putative role in chromatin accessibility to recombination machinery. We combined biochemical approaches, transmission electron microscopy (TEM) and atomic force microscopy (AFM) for analysis of the effects of the Rad51 filament on chromatinized templates. Quantitative analyses clearly demonstrated the occurrence of chromatin remodeling during nucleoprotein filament formation. During Rad51 polymerization, recombinase proteins moved all the nucleosomal arrays in front of the progressing filament. This polymerization process had a powerful remodeling effect, as Rad51 destabilized the nucleosomes along considerable stretches of DNA. Similar behavior was observed with RecA. Thus, recombinase polymerization is a powerful mechanism of chromatin remodeling. These remarkable features open up new possibilities for understanding DNA recombination and reveal new types of ATP-dependent chromatin dynamics
- âŠ