163 research outputs found

    Probing the atmosphere of a sub-Jovian planet orbiting a cool dwarf

    Full text link
    We derive the 0.01 μ\mum binned transmission spectrum, between 0.74 and 1.0 μ\mum, of WASP-80b from low resolution spectra obtained with the FORS2 instrument attached to ESO's Very Large Telescope. The combination of the fact that WASP-80 is an active star, together with instrumental and telluric factors, introduces correlated noise in the observed transit light curves, which we treat quantitatively using Gaussian Processes. Comparison of our results together with those from previous studies, to theoretically calculated models reveals an equilibrium temperature in agreement with the previously measured value of 825K, and a sub-solar metallicity, as well as an atmosphere depleted of molecular species with absorption bands in the IR (≫5σ\gg 5\sigma). Our transmission spectrum alone shows evidence for additional absorption from the potassium core and wing, whereby its presence is detected from analysis of narrow 0.003 μ\mum bin light curves (≫5σ\gg 5\sigma). Further observations with visible and near-UV filters will be required to expand this spectrum and provide more in-depth knowledge of the atmosphere. These detections are only made possible through an instrument-dependent baseline model and a careful analysis of systematics in the data.Comment: 13 pages, 11 figures, 3 tables. Accepted for publication in MNRA

    Non-detection of Contamination by Stellar Activity in the Spitzer Transit Light Curves of TRAPPIST-1

    Get PDF
    We apply the transit light curve self-contamination technique of Morris et al. (2018) to search for the effect of stellar activity on the transits of the ultracool dwarf TRAPPIST-1 with 2018 Spitzer photometry. The self-contamination method fits the transit light curves of planets orbiting spotted stars, allowing the host star to be a source of contaminating positive or negative flux which influences the transit depths but not the ingress/egress durations. We find that none of the planets show statistically significant evidence for self-contamination by bright or dark regions of the stellar photosphere. However, we show that small-scale magnetic activity, analogous in size to the smallest sunspots, could still be lurking in the transit photometry undetected.Comment: Accepted for publication in ApJ

    Studying the Atmospheres of the Most Intriguing WASP Hot Jupiters

    Full text link
    Among the over 300 transiting planets confirmed to date, approximately 130 have been found by groundbased wide angle transit surveys such asWASP. While these surveys are not sensitive enough to detect lowmass planets, they excel at picking out rare hot- Jupiters orbiting reasonably bright stars (V mag = 9 - 11) across the sky. These planets occupy a favorable region in parameter space, as they show frequent and deep transits. Due to the proximity to their host stars these gas giants possess hot extended atmospheres making them ideal targets for the study of their atmospheres via transmission and occultation spectrophotometry. During occultation, the flux emerging from the planetary dayside is eliminated. By comparing the flux in- and out-of occultation, the planet-to-star brightness ratio can be measured. Observations in different passbands yield a measure of the planetary spectral energy distribution and thereby allow to determine the atmospheric temperature structure, heat redistribution efficiency, albedo, and to place constraints on the atmospheric composition. From the spectro-photometric observation of transits, we can measure wavelength dependencies in the effective planetary radius that are sensitive to signatures of chemical elements in the planetary atmosphere. We present results of ongoing observing campaigns employing these methods to study the atmospheres of hot Jupiters discovered by the WASP survey. In particular we show results for the very short-period planet WASP-19b based on data from the 1m-class Euler-Swiss and TRAPPIST telescopes, as well as a transmission spectrum of the low-density hot Saturn WASP-49b obtained from FORS2 at the VLT/UT1

    NGTS-4b: A sub-Neptune transiting in the desert

    Get PDF
    We report the discovery of NGTS-4b, a sub-Neptune-sized planet transiting a 13th magnitude K-dwarf in a 1.34 d orbit. NGTS-4b has a mass M = 20.6 ± 3.0 M⊕ and radius R = 3.18 ± 0.26 R⊕, which places it well within the so-called ‘Neptunian Desert’. The mean density of the planet (3.45 ± 0.95 g cm−3) is consistent with a composition of 100  per cent H2O or a rocky core with a volatile envelope. NGTS-4b is likely to suffer significant mass loss due to relatively strong EUV/X-ray irradiation. Its survival in the Neptunian desert may be due to an unusually high-core mass, or it may have avoided the most intense X-ray irradiation by migrating after the initial activity of its host star had subsided. With a transit depth of 0.13 ± 0.02 per cent, NGTS-4b represents the shallowest transiting system ever discovered from the ground, and is the smallest planet discovered in a wide-field ground-based photometric survey

    Probing the atmosphere of a sub-Jovian planet orbiting a cool dwarf

    Get PDF
    We derive the 0.01-ľm binned transmission spectrum, between 0.74 and 1.0 ľm, of WASP-80b from low-resolution spectra obtained with the Focal Reducer and low-dispersion Spectrograph 2 instrument attached to ESO's Very Large Telescope. The combination of the fact that WASP-80 is an active star, together with instrumental and telluric factors, introduces correlated noise in the observed transit light curves, which we treat quantitatively using Gaussian processes. Comparison of our results together with those from previous studies to theoretically calculated models reveals an equilibrium temperature in agreement with the previously measured value of 825 K, and a subsolar metallicity, as well as an atmosphere depleted of molecular species with absorption bands in the infrared (ť5?). Our transmission spectrum alone shows evidence for additional absorption from the potassium core and wing, whereby its presence is detected from analysis of narrow 0.003 ľm bin light curves (ť5?). Further observations with visible and near-ultraviolet filters will be required to expand this spectrum and provide more in-depth knowledge of the atmosphere. These detections are only made possible through an instrument-dependent baseline model and a careful analysis of systematics in the data

    WASP-80b has a dayside within the T-dwarf range

    Get PDF
    AHMJT is a Swiss National Science Foundation (SNSF) fellow under grant number P300P2-147773. MG and EJ are Research Associates at the F.R.S-FNRS; LD received the support the support of the F.R.I.A. fund of the FNRS. DE, KH, and SU acknowledge the financial support of the SNSF in the frame of the National Centre for Competence in Research ‘PlanetS’. EH and IR acknowledge support from the Spanish Ministry of Economy and Competitiveness (MINECO) and the ‘Fondo Europeo de Desarrollo Regional’ (FEDER) through grants AYA2012-39612-C03-01 and ESP2013-48391-C4-1-R.WASP-80b is a missing link in the study of exo-atmospheres. It falls between the warm Neptunes and the hot Jupiters and is amenable for characterisation, thanks to its host star's properties. We observed the planet through transit and during occultation with Warm Spitzer. Combining our mid-infrared transits with optical time series, we find that the planet presents a transmission spectrum indistinguishable from a horizontal line. In emission, WASP-80b is the intrinsically faintest planet whose dayside flux has been detected in both the 3.6 and 4.5 μ\mum Spitzer channels. The depths of the occultations reveal that WASP-80b is as bright and as red as a T4 dwarf, but that its temperature is cooler. If planets go through the equivalent of an L-T transition, our results would imply this happens at cooler temperatures than for brown dwarfs. Placing WASP-80b's dayside into a colour-magnitude diagram, it falls exactly at the junction between a blackbody model and the T-dwarf sequence; we cannot discern which of those two interpretations is the more likely. Flux measurements on other planets with similar equilibrium temperatures are required to establish whether irradiated gas giants, like brown dwarfs, transition between two spectral classes. An eventual detection of methane absorption in transmission would also help lift that degeneracy. We obtained a second series of high-resolution spectra during transit, using HARPS. We reanalyse the Rossiter-McLaughlin effect. The data now favour an aligned orbital solution and a stellar rotation nearly three times slower than stellar line broadening implies. A contribution to stellar line broadening, maybe macroturbulence, is likely to have been underestimated for cool stars, whose rotations have therefore been systematically overestimated. [abridged]Publisher PDFPeer reviewe
    • …
    corecore