20 research outputs found

    La formation des granules de stress : un possible mécanisme général de la réponse des cellules cancéreuses aux drogues anti-cancers

    Get PDF
    Le rĂ©flexe naturel d’une cellule eucaryote, soumise Ă  un stress (ex : radiations, drogues anti-cancers
), est d’activer des mĂ©canismes de dĂ©fense afin de s’adapter aux conditions extrĂȘmes imposĂ©es, leur permettant de survivre. Un des mĂ©canismes activĂ© en condition de stress est l’inhibition de l’initiation de la traduction menant Ă  la formation de granules de stress (GS). Les GS sont des corps cytoplasmiques dynamiques renfermant des facteurs d’initiation de la traduction, des ARNms, des protĂ©ines de liaison Ă  l’ARN ainsi que des molĂ©cules de signalisation impliquĂ©es dans les voies de mort cellulaire. La formation des GS fut identifiĂ©e comme un Ă©vĂšnement clĂ© inactivant les voies de mort cellulaire, constituant donc un mĂ©canisme majeur de survie, qui dans le cas du cancer peut engendrer une chimiorĂ©sistance. Nous avons prĂ©cĂ©demment conduit un criblage des facteurs d’initiations de la traduction impliquĂ©s dans la formation des GS. Ces travaux (Mazroui et al, 2006 ; Mokas et al, 2009) ont permis d’identifier plusieurs facteurs dont l’inactivation induit la formation des GS. Par contre, l’inactivation du facteur eIF4E, qui est responsable de la reconnaissance des ARNms lors de l’initiation de la traduction, n’induit pas la formation des GS. Mon travail de thĂšse a permis de mettre en Ă©vidence un nouveau rĂŽle du facteur d’initiation de la traduction eIF4E ainsi que son partenaire eIF4GI dans la formation des GS induites par le traitement chimiothĂ©rapeutique Bortezomib. Ce rĂŽle est stimulĂ© par la voie oncogĂ©nique mTORC1, qui est la voie de signalisation responsable de l’interaction eIF4E-eIF4GI. De plus, notre Ă©tude a dĂ©montrĂ© que l’inhibition spĂ©cifique d’eIF4E, d’eIF4GI ou l’inactivation de mTORC1 empĂȘche l’activation des voies anti-apoptotiques associĂ©es au GS, sensibilisant ainsi les cellules cancĂ©reuses aux traitements chimiothĂ©rapeutiques. NĂ©anmoins, la formation des GS n’est pas restreinte au Bortezomib. En effet, notre criblage des drogues chimiothĂ©rapeutiques a identifiĂ© le Sorafenib (NevaxarÂź) et le Lapatinib (Tykerb/TyverbÂź) comme deux puissants inducteurs des GS au sein des cellules cancĂ©reuses. En conclusion, ces travaux ont mis en lumiĂšre un nouveau mĂ©canisme de formation des GS ainsi que deux potentiels inducteurs d’assemblage de ces granules.The natural reflex of a eukaryotic cell under stress (e.g.: radiation, anti-cancer drugs, thermal or oxidative stress) is to activate defense mechanisms to adapt to extreme conditions imposed, allowing them to survive. One mechanism activated under stress conditions is the inhibition of translation initiation leading to the formation of stress granules (SG). SG are dynamic cytoplasmic body containing translation initiation factors, mRNAs, RNA binding proteins and signaling molecules involved in cell death pathways. SG formation was identified as a key event inactivating cell death pathways, thus establishing a major survival mechanism, which in the case of cancer can lead to drug resistance. We previously conducted a screening of the translation initiation factors involved in the SG formation. These works (Mazroui et al, 2006; Mochas et al, 2009) have identified several factors that inactivation induces the formation of GS. For cons, the inactivation of factor eIF4E, which is responsible for the recognition of mRNAs during translation initiation, does not induce the formation of SG. My thesis has highlighted a new role for the translation initiation factors eIF4E and its partner eIF4GI in the SG formation induced by chemotherapeutic drug Bortezomib. This role is stimulated by oncogenic mTORC1 pathway, which is the key regulator of the eIF4E-eIF4GI interaction. In addition, our study demonstrated that specific inhibition of eIF4E, eIF4GI or the inactivation of mTORC1 prevents anti-apoptotic pathways associated with SG and sensitizing cancer cells to chemotherapeutic treatments. The SG formation is not restricted to Bortezomib. Indeed, our screening of chemotherapeutic drugs has identified Sorafenib (Nevaxar Âź) and Lapatinib (Tykerb / Tyverb Âź) as two potent inducers of SG in cancer cells. Our results indicate that the mechanism of action of these two drugs appears to be similar to Bortezomib and they induce the formation of SG by inhibiting translation initiation. In addition, the formation of SG induced by Sorafenib or Lapatinib also seems to depend on the eIF4E-eIF4GI complex formation. Therefore, my work provides a general role of eIF4E-eIF4GI interaction in the assembly of SG and the cancer cells resistance to chemotherapy

    p21WAF1/CIP1 Upregulation through the Stress Granule-Associated Protein CUGBP1 Confers Resistance to Bortezomib-Mediated Apoptosis

    Get PDF
    p21(WAF1/CIP1) is a well known cyclin-dependent kinase inhibitor induced by various stress stimuli. Depending on the stress applied, p21 upregulation can either promote apoptosis or prevent against apoptotic injury. The stress-mediated induction of p21 involves not only its transcriptional activation but also its posttranscriptional regulation, mainly through stabilization of p21 mRNA levels. We have previously reported that the proteasome inhibitor MG132 induces the stabilization of p21 mRNA, which correlates with the formation of cytoplasmic RNA stress granules. The mechanism underlying p21 mRNA stabilization, however, remains unknown.We identified the stress granules component CUGBP1 as a factor required for p21 mRNA stabilization following treatment with bortezomib ( =  PS-341/Velcade). This peptide boronate inhibitor of the 26S proteasome is very efficient for the treatment of myelomas and other hematological tumors. However, solid tumors are sometimes refractory to bortezomib treatment. We found that depleting CUGBP1 in cancer cells prevents bortezomib-mediated p21 upregulation. FISH experiments combined to mRNA stability assays show that this effect is largely due to a mistargeting of p21 mRNA in stress granules leading to its degradation. Altering the expression of p21 itself, either by depleting CUGBP1 or p21, promotes bortezomib-mediated apoptosis.We propose that one key mechanism by which apoptosis is inhibited upon treatment with chemotherapeutic drugs might involve upregulation of the p21 protein through CUGBP1

    Characterization of Fragile X Mental Retardation Protein granules formation and dynamics in Drosophila

    No full text
    Summary FMRP is an evolutionarily conserved protein that is highly expressed in neurons and its deficiency causes fragile X mental retardation syndrome. FMRP controls the translation of target mRNAs in part by promoting their dynamic transport in neuronal RNA granules. We have previously shown that high expression of mammalian FMRP induces formation of granules termed FMRP granules. These RNA granules are reminiscent of neuronal granules, of stress granules, as well as of the recently described in vitro-assembled granules. In contrast with mammalian FMRP, which has two paralog proteins, Drosophila FMRP (dFMRP) is encoded by a single gene that has no paralog. Using this genetically simple organism, we investigated formation and dynamics of FMRP granules. We found that increased expression of dFMRP in Drosophila cells induces the formation of dynamic dFMRP RNA granules. Mutagenesis studies identified the N-terminal protein–protein domain of dFMRP as a key determinant for FMRP granules formation. The RGG RNA binding motif of dFMRP is dispensable for dFMRP granules formation since its deletion does not prevent formation of those granules. Deletion of the RGG motif reduced, however, dFMRP trafficking between FMRP granules and the cytosol. Similarly, deletion of a large part of the KH RNA binding motif of dFMRP had no effect on formation of dFMRP-granules, but diminished the shuttling activity of dFMRP. Our results thus suggest that the mechanisms controlling formation of RNA granules and those promoting their dynamics are uncoupled. This study opens new avenues to further elucidate the molecular mechanisms controlling FMRP trafficking with its associated mRNAs in and out of RNA granules

    Gene and MicroRNA Transcriptome Analysis of Parkinson's Related LRRK2 Mouse Models

    No full text
    Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of genetic Parkinson's disease (PD). The biological function of LRRK2 and how mutations lead to disease remain poorly defined. It has been proposed that LRRK2 could function in gene transcription regulation; however, this issue remains controversial. Here, we investigated in parallel gene and microRNA (miRNA) transcriptome profiles of three different LRRK2 mouse models. Striatal tissue was isolated from adult LRRK2 knockout (KO) mice, as well as mice expressing human LRRK2 wildtype (hLRRK2-WT) or the PD-associated R1441G mutation (hLRRK2-R1441G). We identified a total of 761 genes and 24 miRNAs that were misregulated in the absence of LRRK2 when a false discovery rate of 0.2 was applied. Notably, most changes in gene expression were modest (i.e., <2 fold). By real-time quantitative RT-PCR, we confirmed the variations of selected genes (e.g., adra2, syt2, opalin) and miRNAs (e.g., miR-16, miR-25). Surprisingly, little or no changes in gene expression were observed in mice expressing hLRRK2-WT or hLRRK2-R1441G when compared to non-transgenic controls. Nevertheless, a number of miRNAs were misexpressed in these models. Bioinformatics analysis identified several miRNA-dependent and independent networks dysregulated in LRRK2-deficient mice, including PD-related pathways. These results suggest that brain LRRK2 plays an overall modest role in gene transcription regulation in mammals; however, these effects seem context and RNA type-dependent. Our data thus set the stage for future investigations regarding LRRK2 function in PD development.status: publishe

    Gene and MicroRNA Transcriptome Analysis of Parkinson's Related LRRK2 Mouse Models

    Get PDF
    <div><p>Mutations in <i>leucine-rich repeat kinase 2</i> (LRRK2) are the most frequent cause of genetic Parkinson’s disease (PD). The biological function of LRRK2 and how mutations lead to disease remain poorly defined. It has been proposed that LRRK2 could function in gene transcription regulation; however, this issue remains controversial. Here, we investigated in parallel gene and microRNA (miRNA) transcriptome profiles of three different LRRK2 mouse models. Striatal tissue was isolated from adult LRRK2 knockout (KO) mice, as well as mice expressing human LRRK2 wildtype (hLRRK2-WT) or the PD-associated R1441G mutation (hLRRK2-R1441G). We identified a total of 761 genes and 24 miRNAs that were misregulated in the absence of LRRK2 when a false discovery rate of 0.2 was applied. Notably, most changes in gene expression were modest (i.e., <2 fold). By real-time quantitative RT-PCR, we confirmed the variations of selected genes (e.g., adra2, syt2, opalin) and miRNAs (e.g., miR-16, miR-25). Surprisingly, little or no changes in gene expression were observed in mice expressing hLRRK2-WT or hLRRK2-R1441G when compared to non-transgenic controls. Nevertheless, a number of miRNAs were misexpressed in these models. Bioinformatics analysis identified several miRNA-dependent and independent networks dysregulated in LRRK2-deficient mice, including PD-related pathways. These results suggest that brain LRRK2 plays an overall modest role in gene transcription regulation in mammals; however, these effects seem context and RNA type-dependent. Our data thus set the stage for future investigations regarding LRRK2 function in PD development.</p></div

    Characterization of Fragile X Mental Retardation Protein Recruitment and Dynamics in <em>Drosophila</em> Stress Granules

    Get PDF
    <div><p>The RNA-binding protein Fragile X Mental Retardation (FMRP) is an evolutionarily conserved protein that is particularly abundant in the brain due to its high expression in neurons. FMRP deficiency causes fragile X mental retardation syndrome. In neurons, FMRP controls the translation of target mRNAs in part by promoting dynamic transport in and out neuronal RNA granules. We and others have previously shown that upon stress, mammalian FMRP dissociates from translating polysomes to localize into neuronal-like granules termed stress granules (SG). This localization of FMRP in SG is conserved in <em>Drosophila</em>. Whether FMRP plays a key role in SG formation, how FMRP is recruited into SG, and whether its association with SG is dynamic are currently unknown. In contrast with mammalian FMRP, which has two paralog proteins, <em>Drosophila</em> FMR1 (dFMRP) is encoded by a single gene that has no paralog. Using this genetically simple model, we assessed the role of dFMRP in SG formation and defined the determinants required for its recruitment in SG as well as its dynamics in SG. We show that dFMRP is dispensable for SG formation <em>in vitro</em> and <em>ex vivo</em>. FRAP experiments showed that dFMRP shuttles in and out SG. The shuttling activity of dFMRP is mediated by a protein-protein interaction domain located at the N-terminus of the protein. This domain is, however, dispensable for the localization of dFMRP in SG. This localization of dFMRP in SG requires the KH and RGG motifs which are known to mediate RNA binding, as well as the C-terminal glutamine/asparagine rich domain. Our studies thus suggest that the mechanisms controlling the recruitment of FMRP into SG and those that promote its shuttling between granules and the cytosol are uncoupled. To our knowledge, this is the first demonstration of the regulated shuttling activity of a SG component between RNA granules and the cytosol.</p> </div

    miRNA microarray analysis of LRRK2 mice.

    No full text
    <p>(<b>A</b>) Cluster analysis of significantly (FDR<0.2) misregulated mature miRNAs in various LRRK2 mouse models. Results were generated using Partek Genomics Suite. (<b>B</b>) Venn diagram showing variable overlap between significantly (FDR<0.2) misregulated miRNAs in LRRK2 mice. (<b>C, D and E</b>) Validation of miRNAs by real-time qRT-PCR, as indicated. Statistical significance was determined by a Student unpaired t test (* = p<0.05, ** = p<0.01, *** = p<0.001). Standard error of the mean (SEM) is shown.</p

    Bioinformatics analysis of LRRK2-dependent pathways.

    No full text
    <p>(<b>A</b>) Schematic overview of mRNA:miRNA pairing performed using the IPA software. This analysis allows the discrimination between potential miRNA targets and non-miRNA targets. The generated lists of genes are then processed for biological and functional significance. (<b>B</b>) Number of IPA-generated mRNA:miRNA pairings. Thirteen misregulated miRNAs (from a total of 24) are predicted to regulate 214 genes (from a total of 671). The top-ranking miRNAs are miR-16 and miR-15a, which harbour the same seed sequence (GCTGCT), and thus functional mRNA binding site. Changes in miR-16/15a levels were confirmed by qRT-PCR. (<b>C</b>) Shown here are statistically significant (P<0.05) IPA-generated networks. Both upregulated and downregulated genes predicted to be regulated by miR-16/15a were included in the analysis. Highlighted pathways are relevant for brain function and disease. The image was generated using the IPA software.</p

    The AMA1-RON complex drives Plasmodium sporozoite invasion in the mosquito and mammalian hosts

    No full text
    International audiencePlasmodium sporozoites that are transmitted by blood-feeding female Anopheles mosquitoes invade hepatocytes for an initial round of intracellular replication, leading to the release of merozoites that invade and multiply within red blood cells. Sporozoites and merozoites share a number of proteins that are expressed by both stages, including the Apical Membrane Antigen 1 (AMA1) and the Rhoptry Neck Proteins (RONs). Although AMA1 and RONs are essential for merozoite invasion of erythrocytes during asexual blood stage replication of the parasite, their function in sporozoites was still unclear. Here we show that AMA1 interacts with RONs in mature sporozoites. By using DiCre-mediated conditional gene deletion in P . berghei , we demonstrate that loss of AMA1, RON2 or RON4 in sporozoites impairs colonization of the mosquito salivary glands and invasion of mammalian hepatocytes, without affecting transcellular parasite migration. Three-dimensional electron microscopy data showed that sporozoites enter salivary gland cells through a ring-like structure and by forming a transient vacuole. The absence of a functional AMA1-RON complex led to an altered morphology of the entry junction, associated with epithelial cell damage. Our data establish that AMA1 and RONs facilitate host cell invasion across Plasmodium invasive stages, and suggest that sporozoites use the AMA1-RON complex to efficiently and safely enter the mosquito salivary glands to ensure successful parasite transmission. These results open up the possibility of targeting the AMA1-RON complex for transmission-blocking antimalarial strategies
    corecore