282 research outputs found

    Semiautomated isolation and molecular characterisation of single or highly purified tumour cells from CellSearch enriched blood samples using dielectrophoretic cell sorting

    Get PDF
    Background: Molecular characterisation of single circulating tumour cells (CTCs) holds considerable promise for predictive biomarker assessment and to explore CTC heterogeneity. We evaluate a new method, the DEPArray system, that allows the dielectrophoretic manipulation and isolation of single and 100% purified groups of CTCs from pre-enriched blood samples and explore the feasibility of their molecular characterisation.Methods:Samples containing known numbers of two cell populations were used to assess cell loss during sample loading. Cultured breast cancer cells were isolated from spiked blood samples using CellSearch CTC and Profile kits. Single tumour cells and groups of up to 10 tumour cells were recovered with the DEPArray system and subjected to transcriptional and mutation analysis.Results:On average, 40% cell loss was observed when loading samples to the DEPArray system. Expected mutations in clinically relevant markers could be obtained for 60% of single recovered tumour cells and all groups of tumour cells. Reliable gene expression profiles were obtained from single cells and groups of up to 10 cells for 2 out of 3 spiked breast cancer cell lines.Conclusion:We describe a semiautomated workflow for the isolation of small groups of 1 to 10 tumour cells from whole blood samples and provide proof of principle for the feasibility of their comprehensive molecular characterisation

    Differential impact of RB status on E2F1 reprogramming in human cancer.

    Get PDF
    The tumor suppressor protein retinoblastoma (RB) is mechanistically linked to suppression of transcription factor E2F1-mediated cell cycle regulation. For multiple tumor types, loss of RB function is associated with poor clinical outcome. RB action is abrogated either by direct depletion or through inactivation of RB function; however, the basis for this selectivity is unknown. Here, analysis of tumor samples and cell-free DNA from patients with advanced prostate cancer showed that direct RB loss was the preferred pathway of disruption in human disease. While RB loss was associated with lethal disease, RB-deficient tumors had no proliferative advantage and exhibited downstream effects distinct from cell cycle control. Mechanistically, RB loss led to E2F1 cistrome expansion and different binding specificity, alterations distinct from those observed after functional RB inactivation. Additionally, identification of protumorigenic transcriptional networks specific to RB loss that were validated in clinical samples demonstrated the ability of RB loss to differentially reprogram E2F1 in human cancers. Together, these findings not only identify tumor-suppressive functions of RB that are distinct from cell cycle control, but also demonstrate that the molecular consequence of RB loss is distinct from RB inactivation. Thus, these studies provide insight into how RB loss promotes disease progression, and identify new nodes for therapeutic intervention

    Early treatment versus expectative management of patent ductus arteriosus in preterm infants

    Get PDF
    _Background:_ Much controversy exists about the optimal management of a patent ductus arteriosus (PDA) in preterm infants, especially in those born at a gestational age (GA) less than 28weeks. No causal relationship has been proven between a (haemodynamically significant) PDA and neonatal complications related to pulmonary hyperperfusion and/or systemic hypoperfusion. Although studies show conflicting results, a common understanding is that medical or surgical treatment of a PDA does not seem to reduce the risk of major neonatal morbidities and mortality. As the PDA might have closed spontaneously, treated children are potentially exposed to iatrogenic adverse effects. A conservative approach is gaining interest worldwide, although convincing evidence to support its use is lacking. _Methods:_ This multicentre, randomised, non-inferiority trial is conducted in neonatal intensive care units. The study population consists of preterm infants (GA1.5mm. Early treatment (between 24 and 72h postnatal age) with the cyclooxygenase inhibitor(COXi) ibuprofen (IBU) is compared with an expectative management (no intervention intended to close a PDA). The primary outcome is the composite of mortality, and/or necrotising enterocolitis (NEC) Bell stage ≥ IIa, and/or bronchopulmonary dysplasia (BPD) defined as the need for supplemental oxygen, all at a postmenstrual age (PMA) of 36weeks. Secondary outcome parameters are short term sequelae of cardiovascular failure, comorbidity and adverse events assessed during hospitalization and long-term neurodevelopmental outcome assessed at a corrected age of 2 years. Consequences regarding health economics are evaluated by cost effectiveness analysis and budget impact analysis. _Discussion:_ As a conservative approach is gaining interest, we investigate whether in preterm infants, born at a GA less than 28weeks, with a PDA an expectative management is non-inferior to early treatment with IBU regarding to the composite outcome of mortality and/or NEC and/or BPD at a PMA of 36weeks

    The topography of mutational processes in breast cancer genomes.

    Get PDF
    Somatic mutations in human cancers show unevenness in genomic distribution that correlate with aspects of genome structure and function. These mutations are, however, generated by multiple mutational processes operating through the cellular lineage between the fertilized egg and the cancer cell, each composed of specific DNA damage and repair components and leaving its own characteristic mutational signature on the genome. Using somatic mutation catalogues from 560 breast cancer whole-genome sequences, here we show that each of 12 base substitution, 2 insertion/deletion (indel) and 6 rearrangement mutational signatures present in breast tissue, exhibit distinct relationships with genomic features relating to transcription, DNA replication and chromatin organization. This signature-based approach permits visualization of the genomic distribution of mutational processes associated with APOBEC enzymes, mismatch repair deficiency and homologous recombinational repair deficiency, as well as mutational processes of unknown aetiology. Furthermore, it highlights mechanistic insights including a putative replication-dependent mechanism of APOBEC-related mutagenesis

    Genome-wide mapping of Quantitative Trait Loci for fatness, fat cell characteristics and fat metabolism in three porcine F2 crosses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>QTL affecting fat deposition related performance traits have been considered in several studies and mapped on numerous porcine chromosomes. However, activity of specific enzymes, protein content and cell structure in fat tissue probably depend on a smaller number of genes than traits related to fat content in carcass. Thus, in this work traits related to metabolic and cytological features of back fat tissue and fat related performance traits were investigated in a genome-wide QTL analysis. QTL similarities and differences were examined between three F<sub>2 </sub>crosses, and between male and female animals.</p> <p>Methods</p> <p>A total of 966 F<sub>2 </sub>animals originating from crosses between Meishan (M), Pietrain (P) and European wild boar (W) were analysed for traits related to fat performance (11), enzymatic activity (9) and number and volume of fat cells (20). Per cross, 216 (M × P), 169 (W × P) and 195 (W × M) genome-wide distributed marker loci were genotyped. QTL mapping was performed separately for each cross in steps of 1 cM and steps were reduced when the distance between loci was shorter. The additive and dominant components of QTL positions were detected stepwise by using a multiple position model.</p> <p>Results</p> <p>A total of 147 genome-wide significant QTL (76 at P < 0.05 and 71 at P < 0.01) were detected for the three crosses. Most of the QTL were identified on SSC1 (between 76-78 and 87-90 cM), SSC7 (predominantly in the MHC region) and SSCX (in the vicinity of the gene <it>CAPN6</it>). Additional genome-wide significant QTL were found on SSC8, 12, 13, 14, 16, and 18. In many cases, the QTL are mainly additive and differ between F<sub>2 </sub>crosses. Many of the QTL profiles possess multiple peaks especially in regions with a high marker density. Sex specific analyses, performed for example on SSC6, SSC7 and SSCX, show that for some traits the positions differ between male and female animals. For the selected traits, the additive and dominant components that were analysed for QTL positions on different chromosomes, explain in combination up to 23% of the total trait variance.</p> <p>Conclusions</p> <p>Our results reveal specific and partly new QTL positions across genetically diverse pig crosses. For some of the traits associated with specific enzymes, protein content and cell structure in fat tissue, it is the first time that they are included in a QTL analysis. They provide large-scale information to analyse causative genes and useful data for the pig industry.</p

    Consensus Statement on Circulating Biomarkers for Advanced Prostate Cancer

    Get PDF
    Context: In advanced prostate cancer (PC), there is increasing investigation of circulating biomarkers, including quantitation and characterization of circulating tumour cells and cell-free nucleic acids, for therapeutic monitoring and as prognostic and predictive biomarkers. However, there is a lack of consensus and standardisation regarding analyses, reporting, and integration of results into specific clinical contexts. A consensus meeting on circulating biomarkers was held to address these topics. Objective: To present a report of the consensus statement on circulating biomarkers in advanced PC. Evidence acquisition: Four important areas of controversy in the field of circulating biomarkers in PC management were identified: known clinical utility of circulating biomarkers; unmet clinical needs for circulating biomarkers in PC care; most pressing blood-based molecular assays required; and essential steps for developing circulating biomarker assays. A panel of 18 international PC experts in the field of circulating biomarkers developed the programme and consensus questions. The panel voted publicly but anonymously on 50 predefined questions developed following a modified Delphi process. Evidence synthesis: Voting was based solely on panellist opinions of the predefined topics and therefore not on a standard literature review or meta-analysis. The outcomes of the voting had varying degrees of support, as reflected in the wording of this article and in the detailed voting results provided in the Supplementary material. Conclusions: The expert voting results presented can guide the future development of circulating biomarkers for PC care. Notably, the consensus meeting highlighted the importance of reproducibility and variability studies, among other significant areas in need of trials specifically designed to address them. Patient summary: A panel of international experts met to discuss and vote on the use of different blood-based prostate cancer tests, and how they can be used to guide treatment and disease monitoring to deliver more precise and better patient care

    TP53 outperforms other androgen receptor biomarkers to predict abiraterone or enzalutamide outcome in metastatic castration-resistant prostate cancer.

    Get PDF
    PURPOSE: To infer the prognostic value of simultaneous androgen receptor (AR) and TP53 profiling in liquid biopsies from metastatic castration-resistant prostate cancer (mCRPC) patients starting a new line of AR signalling inhibitors (ARSi). EXPERIMENTAL DESIGN: Between March 2014 and April 2017, we recruited mCRPC patients (n=168) prior to ARSi in a cohort study encompassing 10 European centres. Blood samples were collected for comprehensive profiling of CellSearch-enriched circulating tumour cells (CTCs) and circulating tumour DNA (ctDNA). Targeted CTC RNA-seq allowed the detection of eight AR splice variants (ARVs). Low-pass whole-genome and targeted gene-body sequencing of AR and TP53 was applied to identify amplifications, loss-of-heterozygosity, mutations and structural rearrangements in ctDNA. Clinical or radiological progression-free survival (PFS) was estimated by Kaplan-Meier analysis, and independent associations were determined using multivariable Cox-regression models. RESULTS: Overall, no single AR perturbation remained associated with adverse prognosis after multivariable analysis. Instead, tumour burden estimates (CTC counts, ctDNA fraction, and visceral metastases) were significantly associated with PFS. TP53 inactivation harbored independent prognostic value (HR 1.88, 95%CI 1.18-3.00, p = 0.008), and outperformed ARV expression and detection of genomic AR alterations. Using Cox coefficient analysis of clinical parameters and TP53 status, we identified three prognostic groups with differing PFS estimates (median, 14.7 vs 7.51 vs 2.62 months, p < 0.0001), which was validated in an independent mCRPC cohort (n=202) starting first-line ARSi (median, 14.3 vs 6.39 vs 2.23 months, p < 0.0001). CONCLUSIONS: In an all-comer cohort, tumour burden estimates and TP53 outperform any AR perturbation to infer prognosis
    corecore