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Statement of translational relevance 

Although single AR biomarkers and TP53 gene perturbations have shown to be of prognostic value, no large-

scale studies have simultaneously investigated multiple AR and TP53 biomarkers. Synchronous profiling of all 

outcome-associated somatic alterations in AR and TP53 in liquid biopsies of mCRPC patients (n=168) prior to 

abiraterone and enzalutamide treatment demonstrates that TP53, but not AR,  is an independently-associated 

negative response biomarker. We present and validate a three-stratum risk stratification system using clinical 

variables and TP53 alterations to assist treatment decisions in mCRPC. Hence, efficient prognostication of 

mCRPC patients, before starting abiraterone or enzalutamide treatment, is achievable by combining TP53 liquid 

biopsy profiling and clinical variables. Further comprehensive AR profiling studies are required to determine 

which patients have a relevant AR biomarker output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 

 
Purpose: To infer the prognostic value of simultaneous androgen receptor (AR) and TP53 profiling in liquid 

biopsies from metastatic castration-resistant prostate cancer (mCRPC) patients starting a new line of AR 

signalling inhibitors (ARSi). 

 

Experimental design: Between March 2014 and April 2017, we recruited mCRPC patients (n=168) prior to 

ARSi in a cohort study encompassing 10 European centres. Blood samples were collected for comprehensive 

profiling of CellSearch-enriched circulating tumour cells (CTCs) and circulating tumour DNA (ctDNA). 

Targeted CTC RNA-seq allowed the detection of eight AR splice variants (ARVs). Low-pass whole-genome and 

targeted gene-body sequencing of AR and TP53 was applied to identify amplifications, loss-of-heterozygosity, 

mutations and structural rearrangements in ctDNA. Clinical or radiological progression-free survival (PFS) was 

estimated by Kaplan-Meier analysis, and independent associations were determined using multivariable Cox-

regression models.  

 

Results: Overall, no single AR perturbation remained associated with adverse prognosis after multivariable 

analysis. Instead, tumour burden estimates (CTC counts, ctDNA fraction, and visceral metastases) were 

significantly associated with PFS. TP53 inactivation harbored independent prognostic value (HR 1.88, 95%CI 

1.18-3.00, p = 0.008), and outperformed ARV expression and detection of genomic AR alterations. Using Cox 

coefficient analysis of clinical parameters and TP53 status, we identified three prognostic groups with differing 

PFS estimates (median, 14.7 vs 7.51 vs 2.62 months, p < 0.0001), which was validated in an independent 

mCRPC cohort (n=202) starting first-line ARSi (median, 14.3 vs 6.39 vs 2.23 months, p < 0.0001). 

 

Conclusions: In an all-comer cohort, tumour burden estimates and TP53 outperform any AR perturbation to 

infer prognosis.  
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Introduction 

The androgen receptor (AR) remains the central target in the treatment of metastatic prostate cancer (mPC), 

which eventually develops lethal castration-resistance (mCRPC), for which current standard-of-care therapies 

lack prognostic biomarkers. Although second-generation AR signalling inhibitors (ARSi) are effective in both 

chemotherapy-naïve and -pretreated mCRPC, a priori resistance is observed in up to 40% of patients (1). 

Genomic analyses revealed pivotal roles for AR, phosphoinositide-3-kinase (PI3K), DNA-repair and cell cycle 

pathways in mPC (2). AR alterations encompass copy numbers variants (CNVs), mutations and the expression 

of AR splice variants (ARVs), which are associated with poor outcome on ARSi treatment (3-6). Additionally, 

intra-AR genomic structural rearrangements (GSRs) have been described in (pre-)clinical mCRPC samples (7-

9). DNA-repair or PI3K pathway aberrations have been proposed as ARSi biomarkers, but the results are 

currently discordant (10-13). However, TP53 inactivation has consistently been associated with poor prognosis 

(11,12,14). To date, information on the simultaneous detection of multiple AR perturbations and other genomic 

events, and their association with outcome is lacking (9). Here, we investigated the prognostic value of a 

combined AR- and TP53-focussed circulating tumor cell (CTC) and circulating tumor DNA (ctDNA) liquid 

biopsy to identify prognostic biomarkers for ARSi. 

  

Methods 

A detailed description of materials and methods is provided in Supplementary Materials and Methods. In brief, 

we recruited mCRPC patients with histologically confirmed prostate adenocarcinoma, starting a new line of 

second-generation ARSi, i.e. abiraterone or enzalutamide, for biochemically-defined progressive disease (PD) 

according to EAU guidelines (1). At baseline, 10-12 weeks follow-up and PD, a blood sample was collected for 

CellSearch CTC enumeration, CTC-ARV targeted RNA-seq and low-pass whole genome and targeted 

sequencing of plasma cell-free DNA (cfDNA) for AR and TP53 to infer amplifications, loss-of-heterozygosity, 

mutations and  structural rearrangements, as previously described (9). Treating physicians were blinded to the 

CTC/ctDNA results during clinical practice. Primary outcome measure was progression-free survival (PFS), 

according to Prostate Cancer Clinical Trials Working Group 3 criteria (15). Secondary outcomes encompassed 

PSA waterfall plots and confirmed ≥50%PSA response rates at 10-12 weeks (16), and overall survival (OS). 

The association between somatic variations and time-to-event outcomes were evaluated by Kaplan-Meier (KM) 

analysis with logrank test and assessment of effect by uni-(UV-Cox) and multivariable Cox (MV-Cox) 

regression models, including the following covariates: PSA level, CTC count and ctDNA fraction at baseline, 



prior chemotherapy, prior exposure to abiraterone or enzalutamide, and presence of visceral metastases 

(5,17,18). Co-occurrence was tested using Chi-squared or Fisher’s Exact tests. Correlations and comparisons by 

Pearson’s, Spearman’s and Mann-Whitney tests, respectively. Statistical analysis was performed in R (v3.3.2), 

with two-sided p values < 0.05 considered as statistically significant. 

 

 

Results 

Patient cohort and sample collection 

Between March 2014 and April 2017, 168 mCRPC patients were recruited, starting ARSi (Supplementary 

Figure 1A; Table 1). In total, 148/168 (88.1%) patients had not received prior ARSi for CRPC. We profiled 249 

CTC and 252 cfDNA samples, with a baseline ARV and AR/TP53 gene profile in 131 and 145 evaluable 

samples, respectively, and matching datasets in 108 cases (Supplementary Figure 1B). The median PFS in the 

studied cohort was 6.8 months (IQR: 3.4-13.2), with 129/168 (76.8%) patients progressed at the time of 

analysis. The median follow-up time was 12.4 months (IQR: 7-17.3), with 65/168 (38.7%) patients deceased at 

the time of analysis. 

  

CTC and ctDNA profiling 

CTC-ARV sequencing at baseline (n=131), follow-up (n=61) and PD (n=57) demonstrated dominance of the 

full-length AR isoform, with ARV fractions ranging from 0.5±1.6%, 0.06±0.1% to 1.6±4.9%, respectively 

(Supplementary Figure 2A). ARV expression demonstrated inter- and intra-patient heterogeneity and was more 

prevalent in samples harvested at the time of PD. At baseline, ARVs were frequently co-expressed with AR-V3 

(53/131, 40.4%) and AR-V7 (34/131, 25.9%) being the most prevalent constitutively active ARVs 

(Supplementary Table 1). AR45 and AR-V3 were most abundantly expressed (Supplementary Figure 2B&C and 

Supplementary Figure 3). 

  

Plasma AR sequencing revealed genomic alterations in 63/145 (43.4%), 14/45 (31.1%) and 33/62 (53.2%) 

patients at baseline, follow-up and PD, respectively (Supplementary Figure 4A). AR was amplified in 54/145 

(37.2%), 9/45 (20%) and 26/62 (41.9%) patients at baseline, follow-up and progression, respectively. Hotspot 

mutations were detected in 13/145 (8.9%), 3/45 (6.7%) and 7/62 (11.3%) patients at baseline, follow-up and PD, 

respectively, with p.L702H and p.H875Y as most frequently detected. Tiled AR sequencing revealed GSRs in 



26/145 (17.9%), 7/45 (15.6%) and 16/62 (25.8%) patients at baseline, follow-up and PD, respectively. 

Excluding structural variants of unknown significance (SVUS) and focussing on rearrangements affecting 

coding or cryptic exon (CE) regions, an increased prevalence was observed at the time of PD compared to 

baseline (12/62 (19.4%) vs 12/145 (8.3%) patients, χ2 test: p = 0.04). Also, the number of events in GSR-

positive patients increased at progression (Mann-Whitney U test: p = 0.014), accompanied with more 

rearrangement complexity (Supplementary Figure 4B&C). GSRs typically co-occurred with AR amplifications, 

with 43/49 (87.8%) GSR-positive samples having gained copy numbers (χ2 test: p < 0.0001).   

 

Plasma TP53 sequencing revealed genomic alterations in 36/145 (24.8%), 12/45 (26.7%) and 27/62 (42.9%) 

patients at baseline, follow-up and PD, respectively, with bi-allelic inactivation in 24/36 (66.7%), 6/12 (50.0%) 

and 17/26 (65.4%) of TP53-perturbed patients, respectively. 

  

Integrating ARV data with genomic alterations in the AR gene 

Comprehensive CTC and ctDNA profiles were available for 108, 31 and 49 patients at baseline, follow-up and 

PD, respectively (Figure 1). Of note, we observed that CTC-negative enumeration samples were occasionally 

positive for ctDNA and/or ARV expression in their temporally-matched plasma and/or blood samples, 

respectively (Supplementary Figure 5).  For AR, when combining CNVs, GSRs, mutations and ARVs (excluding 

AR-V1/2, which were expressed in nearly all patients), we detected perturbations in 77/108 (71.3%), 23/31 

(74.2%) and 48/49 (97.9%) patients at baseline, follow-up and PD, respectively. ARV expression (excluding 

AR-V1/2) occurred in patients with and without AR amplifications, which at baseline suggested a higher 

prevalence in AR-amplified disease (65.9% vs 45.3%, χ2 test: p = 0.05). However, ARV abundance was higher in 

AR-amplified (p = 0.027) or -rearranged (p = 0.002) samples obtained at PD. Interestingly, when focusing on 

exon1-deleting GSRs (i.e. ARv45), we observed increased expression levels of the exon 1b-2 junction, 

corresponding to the AR45 isoform (Mann-Whitney U test: p = 0.002) (Supplementary Figure 6).       

  

CTC-ARV profiling and clinical outcome 

A shorter PFS was observed in patients expressing AR45, AR-V3, AR-V4, AR-V5 and AR-V7 at baseline (all p 

< 0.05) (Supplementary Figure 7). However, in MV-Cox analysis, the individual ARVs were not prognostic, 

whereas CTC count and prior chemotherapy exposure were independently associated with poor outcome 



(Supplementary Table 2). Logrank testing identified a a shorter OS in patients expressing AR45, AR-V3, AR-

V5, AR-V7 and AR-V9 (all p < 0.01) (Supplementary Figure 7). 

  

When combining PFS-associated ARVs from univariable analysis, we observed that 69/131 (52.6%) patients 

were expressing at least one of these ARVs, demonstrating a shorter PFS (median, 4.00 vs 11.0 months, p = 

0.00014) (Figure 2A). However, in MV-Cox analysis, combined ARV expression was not prognostic, and only 

CTC counts were independently associated with poor outcome (hazard ratio (HR) 1.33, 95% confidence interval 

(CI) 1.14-1.55, p < 0.001) (Supplementary Table 2). For 116/131 (88.5%) cases PSA follow-up data at 10-12 

weeks (or before in case of early PD) were available (Supplementary Figure 8) which demonstrated fewer 

confirmed ≥50% PSA responses in ARV-expressing patients (20% vs 48%, χ2 test: p = 0.006) (Figure 2A).    

  

Plasma-AR genomic profiling and clinical outcome 

AR-amplified patients had a shorter PFS compared to patients who were copy-number neutral (median, 3.9 vs 

9.5 months, p < 0.0001). Patients with intra-AR GSRs (with or without SVUS) had a shorter PFS compared to 

patients with a wild-type AR (median, 3.6 vs 7.8 months, p < 0.001) (Supplementary Figure 9). No association 

between AR mutations and outcome was observed (Supplementary Table 2). For 132/145 (91%) cases PSA 

follow-up data were available, which demonstrated no association between genomic alterations and PSA 

response at 10-12 weeks (Supplementary Figure 9). In MV-Cox analysis, AR amplification and GSRs lost 

significance, whereas the ctDNA fraction, baseline PSA level and presence of visceral metastases were 

independently associated with poor outcome (Supplementary Table 2). Logrank testing identified a shorter OS in 

AR-amplified (median, 11.2 vs 29.0 months, p < 0.0001) and GSR-positive patients, regardless if SVUS were in- 

or excluded (median, 7.7 vs 26.7 or 7.3 vs 25.6 months, both p < 0.001) (Supplementary Figure 9). The twelve 

patients harbouring GSRs within coding or CE regions (of whom 11/12 (91.7%) patients were AR-amplified) 

represented a unique subpopulation with worse PFS (median, 3.3 vs 4.8 vs 10.0 months, p < 0.0001) and OS 

(median, 7.3 vs 11.2 vs 29.7 months, p < 0.0001), compared to GSR-negative/AR-amplified and wild-type 

patients (Supplementary Figure 10).       

  

When combining PFS-associated genomic AR alterations from univariable analysis, we observed that 55/145 

(37.9%) patients had a shorter PFS (median, 3.9 vs 10.0 months, p < 0.0001) (Figure 2B). In MV-Cox analysis, 

the combined plasma-AR status lost significance, whereas ctDNA fraction (HR 1.02, 95%CI 1.01-1.04, p < 



0.0001), baseline PSA levels (HR 1.12, 95%CI 1.00-1.26, p = 0.047) and presence of visceral metastases (HR 

1.82, 95%CI 1.11-3.00, p = 0.02) remained independently associated with poor outcome (Supplementary Table 

2). No associations between the combined plasma-AR status and PSA response were observed (Figure 2B). 

 

Plasma TP53 genomic profiling and clinical outcome 

Patients with a TP53 perturbation had a shorter PFS compared to patients who were wild-type (median, 3.0 vs 

8.7 months, p < 0.0001) (Figure 2C). The poorest PFS was observed for patients harbouring a bi-allelic 

inactivation, compared to patients with a mono-allelic perturbation or wild-type genotype (median, 2.7 vs 5.3 vs 

8.7 months, p < 0.0001). However, the PFS difference between mono- and bi-allelic inactivation was not 

significant (p = 0.4) (Supplementary Figure 11A). PSA follow-up data at 10-12 weeks demonstrated fewer 

confirmed ≥50% PSA responses in TP53-perturbed patients (15.4% vs 46.8%, χ2 test: p = 0.008) (Figure 2C). In 

MV-Cox analysis, a perturbed TP53 status was independently associated with poor outcome (HR 1.88, 95%CI 

1.18-3.00, p = 0.008), together with ctDNA fraction (HR 1.02, 95%CI 1.01-1.03, p = 0.0005) and presence of 

visceral metastases (HR 1.72, 95%CI 1.05-2.84, p = 0.032) (Supplementary Table 2). Logrank testing identified 

a shorter OS in TP53-perturbed disease (median, 7.8 vs 26.7 months, p < 0.0001) (Supplementary Figure 11B). 

  

Benchmarking outcomes of ARV, genomic AR, and TP53 profiling 

In the light of previously-published data (3,5,18,19), we were surprised by our findings of lack of association 

between ARV expression, combined plasma AR-status, and outcome in our MV-Cox analysis. Even considering 

different AR-V7 expression level thresholds for positivity failed to identify independent associations with 

outcome (Supplementary Figure 12). We tested the associative power of TP53 alterations against AR-derived 

biomarkers in a MV-Cox analysis, by including ARV, AR and TP53 genomic data (Supplementary Figure 13A). 

Perturbed TP53 status was the only molecular biomarker independently associated with poor outcome (HR 1.97, 

95%CI 1.14-3.40, p = 0.015), together with baseline PSA levels (HR 1.24, 95%CI 1.07-1.44, p = 0.005) and 

presence of visceral metastases (HR 2.11, 95%CI 1.21-3.66, p = 0.008). Even against the well-established AR 

amplification and AR-V7 biomarkers, TP53 remained independently associated with poor outcome (HR 1.89, 

95%CI 1.08-3.32, p = 0.026) (Supplementary Figure 13B). 

 

 

 



Inferring prognosis using clinical features and a TP53-driven liquid biopsy 

To facilitate prognostication of patients initiating ARSi, we developed a scoring algorithm using the TP53 MV-

Cox regression coefficients (Supplementary Table 2; Figure 3A). We generated a PFS-score by summation of 

the individual variables multiplied by their corresponding Cox regression coefficient (Figure 3B). Quartile index 

stratification of the PFS-scores (<Q1, Q1-Q3 and ≥Q3) identified three prognostic groups (good, intermediate 

and poor) with different KM PFS estimates (median, 14.7 vs 7.51 vs 2.62 months, p < 0.0001). Next, we 

validated the developed classifier in an independent cohort of 201 evaluable treatment-naïve mCRPC patients, 

initiating abiraterone or enzalutamide (14). Stratification based on the PFS-score quartiles partitioned the 

independent cohort into three prognostic groups with 81 (40.3%), 89 (44.3%) and 31 (15.4%) patients with 

similar median PFS estimates of 14.3, 6.39 and 2.23 months, respectively (Figure 3C and D). 

 

 

Discussion 

This is the first large-scale prospective multicentre study to perform simultaneous profiling of CTC and ctDNA 

liquid biopsies from all-comer mCRPC patients before, during and at progression on ARSi. By accounting for 

both ARVs and AR genomic alterations, we observed that 71.3% of mCRPC patients carry at least one relevant 

AR perturbation at baseline. Interestingly, other ARVs, besides AR-V7, are also associated with outcome in 

univariable analyses. In addition, 18% of mCRPC patients demonstrate intra-AR rearrangements, which 

typically co-occur with AR amplifications, and have a poor prognosis. However, our key finding is that TP53 

inactivation outperforms any AR-derived biomarker as negative prognosticator for second-generation ARSi. 

Using a clinical feature and TP53-driven liquid biopsy-derived classifier, we observe that 50-55% of mCRPC 

patients starting ARSi can be reliably stratified into good (median PFS ≥ 14.0 months) or poor (median PFS ≤ 

2.5 months) prognosis groups. 

  

The present study demonstrates how AR perturbations, such as AR-V7 and AR amplifications, can be detected in 

the majority of mCRPC patients, however, none of the AR biomarkers were independently associated with 

treatment outcomes in MV-Cox analyses. Although the initial discovery by Antonarakis et al (20) suggested that 

AR-V7 could act as a negative response biomarker for ARSi, subsets of patients expressing AR-V7 still 

demonstrate clinical benefit (21). Hence the clinical utility of AR-V7 is currently controversial (22), and a 



recent consensus concluded that there is insufficient evidence to support the implementation of AR-V7 testing in 

clinical practice (23). 

  

Intra-AR rearrangements have been described as a potential endocrine resistance mechanism, and could be 

detected in up to 50% of heavily pre-treated mCRPC patients using tumor tissue or plasma ctDNA (8,9). Most 

recently, structural rearrangements were detected in 19/50 (38%) preselected patients with known high ctDNA 

fractions prior to ARSi and typically demonstrated inferior outcome (14). Here, we demonstrate for the first 

time how patients with intra-AR rearrangements encompass a unique subpopulation with poorest prognosis. 

However, in MV-Cox we observed that none of the AR-derived biomarkers were independently associated with 

outcome, thereby confirming the recent report investigating the association between AR amplification and 

response to ARSi (14). Since both ctDNA fraction and CTC enumeration were independently associated with 

outcome in our MV-Cox analysis, our study exemplifies the importance adjusting for tumor burden estimates 

when performing biomarker discovery studies. Tumor burden may be correlated to the number of pre-existing 

resistant cells harbouring subclonal mutations before the start of therapy, which may prevent molecularly-

targeted trials to reach their primary endpoints (24,25). 

  

Despite not reaching statistical significance when associating with outcome, we believe that AR perturbations 

may still play a key role in the disease. However, there are inherent challenges with using AR as a baseline 

biomarker. AR biomarkers were detectable in the vast majority of patients at baseline and almost all at 

progression in our study. If at least one AR biomarker is detectable in the majority of men, comprehensive 

profiling needs to be undertaken to determine which patients express a relevant biomarker-output from the AR 

locus in relation to the upcoming therapy. In addition, as the chemo-hormonal therapy landscape for mPC 

evolves (26-28), the somatic evolutionary trajectory of the AR-locus is likely to be altered and needs to be 

explored as guidelines are updated. 

  

However, until the molecular heterogeneity of AR has been completely resolved, TP53 profiling can be applied 

to identify poor prognosis patients. Beyond circulating and clinical disease burden estimates, TP53 status 

remained significantly associated with outcome in our MV-Cox analysis. This emphasises the importance of 

looking into other pathways or transdifferentiation processes, which have been implicated in endocrine 

resistance and AR-independent tumour growth (2,29,30). Recent clinical studies have demonstrated an 



association between TP53 inactivation and poor response to next generation ARSi (11,12,14). Our study 

provides confirmatory evidence for the molecular characterization of TP53, reproducing its independent 

prognostic value, together with ctDNA fraction and presence of visceral metastasis, in an all-comer cohort of 

men with mCRPC.   

  

Additionally, we developed a robust and reliable three-stratum risk stratification system, using both clinical 

features and a TP53-driven liquid biopsy to identify patients with good and poor prognosis in the context of 

ARSi. Our PFS classifier was tested in a large mCRPC cohort (n=201), recruited in a randomised clinical trial 

(RCT) (14), and identified 31/201 (15.4%) patients in this independent cohort with poorest prognosis despite 

ARSi, who may be better served with other treatment modalities.   

 

Limitations of the present study include the absence or incomplete collection of data on patient performance 

status and routine clinical parameters. For example baseline alkaline phosphatase and lactate dehydrogenase 

concentrations were missing in approximately 30% of the studied cohort, and hence not included in MV-Cox 

analysis. Additionally the number of metastastatic lesions was not collected. Formal performance status scores, 

which are associated with OS in mCRPC patients starting first-line chemotherapy (31) but not with time to 

progression in context of ARSi (14), are not collected as standard practice in the recruiting centres. We validated 

our prognostic classifier in an independent cohort of patients with a priori knowledge that TP53, ctDNA 

fraction, and visceral metastases were independently associated with outcome. However, and importantly, we 

demonstrate that our stratification method, which was generated on an all-comer cohort of men with mCRPC, 

gave similar PFS estimates and HR in a completely different cohort from an RCT. Although our study was 

prospectively designed to test the hypothesis that a combined ARV profiling strategy is prognostic in the context 

of ARSi, our exploratory plasma-derived biomarker analyses were undertaken retrospectively. Furthermore, our 

study of a heterogeneous cohort may be underpowered to identify PFS differences in specific subgroups of 

patients expressing ARVs. 

 

 

 

 

 



Conclusion 

The present study is the first large-scaled prospective multicentre study to perform comprehensive AR and TP53 

profiling in CTCs and cfDNA in an all-comer cohort of men with mCRPC starting abiraterone or enzalutamide 

outside the context of a RCT. Besides emphasizing the importance of comprehensive AR profiling, a major 

strength of our study is the identification of a single molecular TP53 biomarker and tumor burden-driven 

stratification system for all comer patients commencing ARSi. The activity and efficacy of treatment selection 

driven by TP53, AR and other molecular biomarkers will need to be tested in a future prospective interventional 

RCT. 
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Figure and Table legends 

 

Figure 1 – Comprehensive landscape of somatic AR and TP53 perturbations in liquid biopsies from 

patients with mCRPC at baseline (n=108), follow-up (n=31) or at progression (n=49) on abiraterone or 

enzalutamide. Samples are grouped according to sample type. Upper: TP53 panel with copy-number, mutation 

and structural rearrangement status. Lower: AR panel, encompassing a CNV panel: AR copy number stratified 

according to amplification status. SNV panel: hotspot mutations within the ligand-binding domain of AR. GSR 

panel: genomic structural rearrangements across the AR gene. ARV panel: Presence of absence of AR splice 

variant expression. CNV denotes copy number variation. SNV denotes single nucleotide variation. GSR denotes 

genomic structural rearrangements. ARV denotes AR splice variants. LOH denotes loss-of-heterozygosity. MT 

denotes mutant. SSV denotes significant structural variant. AMP denotes amplified. MT denotes mutant. DEL 

denotes deletion. DUP denotes duplication. INV denotes inversion. TRA denotes translocation. ARv45 denotes 

structural variant deletion AR exon 1, which may result in AR45 expression. SVUS denotes structural variant of 

unknown significance. SSV denotes significant structural variant. Pos denotes positive. WT denotes wild-type. 
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Figure 2 – AR splice variant expression in circulating tumour cells, detection of genomic AR and TP53 

perturbations in plasma cell-free DNA, progression-free survival and PSA response on abiraterone or 

enzalutamide. Kaplan-Meier (KM) analysis of progression-free survival (upper) and waterfall plots (WF) of 

prostate-specific antigen (PSA) responses after 10-12 weeks (or before in case of early disease progression) on 

therapy (lower), stratified according to outcome-associated ARV expression in CTCs (A), genomic AR (B) or 

TP53 (C) perturbations in plasma cfDNA at baseline. p-value in KM plot is calculated via logrank test. In WF 

plots: * denotes PFS < 10-12 weeks, ¶ denotes PSA increase > 200% and dashed blue horizontal lines represent 

50% decrease in PSA.    
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Figure 3 – Development and validation of a three stratum risk stratification system using clinical features 

and molecular profiling. A) Multivariable Cox regression analysis (hazard ratio (confidence interval)) of 

progression-free survival using baseline clinical characteristics, ctDNA fraction estimate and TP53 status in 

patients with mCRPC. B) Multi-level landscape of cox coefficient-adjusted variable values (bottom), calculated 

clinical progression (i.e. PFS) score (middle) and progression-free survival (top). Patients are grouped according 

to the PFS score category (i.e. < Q1, Q1-Q3 and > Q3 level) and ordered according to increasing progression-

free survival. Horizontal dashed lines represent 12- and 6-month landmarks. C) Kaplan-Meier analysis of 

progression-free survival, stratified according to clinical progression score category at baseline for the current 

study (i.e. training cohort, n=143) and Vancouver Prostate Centre study (i.e. testing cohort, n=201). p-value is 

calculated via logrank test. D) Performance characteristics of the three stratum risk stratification system, 

comparing risk group prevalences, median PFS times and Cox hazard ratios.   
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ctDNA fraction (%), median (IQR) 10 (3 – 30) 3.9 (0 – 21.4)

PSA (ng/mL), median (IQR) 28.64 (12.03 – 114.50) 36.05 (11.30 – 106.50)

Prior chemotherapy 63 (43.4%) 0 (0%)

Prior ARSi 19 (13.1%) 0 (0%)

Presence of visceral metastases 24 (16.5%) 22 (10.9%)

Perturbed plasma-TP53 status 36 (24.8%) 65 (32.2%)

Number of evaluable patients for PFS SCORE * 143 201

PFS SCORE

Good prognosis 36/143 (25.2%) 81/201 (40.3%)

Intermediate prognosis 71/143 (49.6%) 89/201 (44.3%)

Poor prognosis 36/143 (25.2%) 31/201 (15.4%)

Median PFS (95%CI) (months)

Good prognosis 14.69 (12.62 – NR) 14.26 (9.64 – NR)

Intermediate prognosis 7.51 (5.74 – 10.1) 6.39 (5.48 – 9.25)

Poor prognosis 2.62 (1.84 – 3.21) 2.23 (1.84 – 4.72)

p¶ < 0.0001 < 0.0001

Cox PH HR (95%CI)

Good prognosis Reference Reference

Intermediate prognosis 2.16 (1.29 – 3.63) 1.86 (1.24 – 2.80)

Poor prognosis 7.22 (4.01 – 12.99) 6.16 (3.72 – 10.20)

p† < 0.0001 < 0.0001
* Patients excluded due to missing PSA measurements
¶ Logrank test
† Wald test



Table 1 – Patient characteristics 

 

 

 

 

 

n %

Patients 168 100%

Age at registration, yr, mean ± SD 76 ± 7.7

Tumor stage at diagnosis
T1/2 45 26,79%
T3/4 41 24,40%

M1 45 26,79%
node-positive 12 7,14%
Not specified 25 14,88%

Gleason score at diagnosis
≤ 7 63 37,50%

8 - 10 83 49,40%
Not specified 22 13,10%

Primary treatment
ADT (± RT) 76 45,24%

Radical Px (± RT) 61 36,31%
Radical Px + ADT 5 2,98%

Other 15 8,93%
Not specified 11 6,55%

Previous Chemotherapy
Chemotherapy naïve 100 59,52%

Chemotherapy pretreated 68 40,48%

Previous ARS inhibitor for CRPC
no 148 88,10%

yes 20 11,90%

Initiating Therapy
Abiraterone Acetate 111 66,07%

Enzalutamide 57 33,93%

Metastatic burden at start Therapy
LN only 20 11,90%

Bone only 73 43,45%
Bone and LN 45 26,79%

Visceral and bone and/or LN 26 15,48%
Not specified 4 2,38%

Baseline blood chemistry median IQR

LDH, U/L (n=119) 335 217 - 655.5
AP, U/L (n=123) 102 73 - 160.5

PSA, µg/L (n=164) 36.92 13.5 - 144.9

Baseline circulating tumor cells median IQR

CTC, #/7.5mL (n=164) 2 0 - 17.5

All Patients
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