3,364 research outputs found
Instrumentation for calibration and control of a continuous-flow cryogenic tunnel
Those aspects of selection and application of calibration and control instrumentation that are influenced by the extremes in the temperature environment to be found in cryogenic tunnels are described with emphasis on the instrumentation and data acquisition system used in the Langley 0.3 m transonic cryogenic tunnel. Typical calibration results obtained in a 20 by 60 cm two dimensional test section are included
A fan pressure ratio correlation in terms of Mach number and Reynolds number for the Langley 0.3 meter transonic cryogenic tunnel
Calibration data for the two dimensional test section of the Langley 0.3 Meter Transonic Cryogenic Tunnel were used to develop a Mach number-Reynolds number correlation for the fan pressure ratio in terms of test section conditions. Well established engineering relationships combined to form an equation which is functionally analogous to the correlation. A geometric loss coefficient which is independent of Reynolds number or Mach number was determined. Present and anticipated uses of this concept include improvement of tunnel control schemes, comparison of efficiencies for operationally similar wind tunnels, prediction of tunnel test conditions and associated energy usage, and determination of Reynolds number scaling laws for similar fluid flow systems
Pressure distributions from high Reynolds number transonic tests of an NACA 0012 airfoil in the Langley 0.3-meter transonic cryogenic tunnel
Tests were conducted in the 2-D test section of the Langley 0.3-meter Transonic Cryogenic Tunnel on a NACA 0012 airfoil to obtain aerodynamic data as a part of the Advanced Technology Airfoil Test (ATAT) program. The test program covered a Mach number range of 0.30 to 0.82 and a Reynolds number range of 3.0 to 45.0 x 10 to the 6th power. The stagnation pressure was varied between 1.2 and 6.0 atmospheres and the stagnation temperature was varied between 300 K and 90 K to obtain these test conditions. Tabulated pressure distributions and integrated force and moment coefficients are presented as well as plots of the surface pressure distributions. The data are presented uncorrected for wall interference effects and without analysis
Development of a computer program to obtain ordinates for NACA-6 and 6A-series airfoils
A computer program was developed to produce the ordinates for airfoils of any thickness, thickness distribution, or camber in the NACA 6- and 6A-series. For the 6-series and for all but the leading edge of the 6A-series, agreement between the ordinates obtained from the new program and previously published values is generally within .00005 chord. Near the leading edge of the 6A-series airfoils, differences up to .00035 chord are found
Development of a computer program to obtain ordinates for NACA 4-digit, 4-digit modified, 5-digit, and 16 series airfoils
A computer program developed to calculate the ordinates and surface slopes of any thickness, symmetrical or cambered NACA airfoil of the 4-digit, 4-digit modified, 5-digit, and 16-series airfoil families is presented. The program produces plots of the airfoil nondimensional ordinates and a punch card output of ordinates in the input format of a readily available program for determining the pressure distributions of arbitrary airfoils in subsonic potential viscous flow
Review of design and operational characteristics of the 0.3-meter transonic cryogenic tunnel
The past 6 years of operation with the NASA Langley 0.3 m transonic cryogenic tunnel (TCT) show that there are no insurmountable problems associated with cryogenic testing with gaseous nitrogen at transonic Mach numbers. The fundamentals of the concept were validated both analytically and experimentally and the 0.3 m TCT, with its unique Reynolds number capability, was used for a wide variety of aerodynamic tests. Techniques regarding real-gas effects were developed and cryogenic tunnel conditions can be set and maintained accurately. Cryogenic cooling by injecting liquid nitrogen directly into the tunnel circuit imposes no problems with temperature distribution or dynamic response characteristics. Experience with the 0.3 m TCT, indicates that there is a significant learning process associated with cryogenic, high Reynolds number testing. Many of the questions have already been answered; however, factors such as tunnel control, run logic, economics, instrumentation, and model technology present many new and challenging problems
The Capaciousness of No: Affective Refusals as Literacy Practices
© 2020 The Authors. Reading Research Quarterly published by Wiley Periodicals, Inc. on behalf of International Literacy Association The authors considered the capacious feeling that emerges from saying no to literacy practices, and the affective potential of saying no as a literacy practice. The authors highlight the affective possibilities of saying no to normative understandings of literacy, thinking with a series of vignettes in which children, young people, and teachers refused literacy practices in different ways. The authors use the term capacious to signal possibilities that are as yet unthought: a sense of broadening and opening out through enacting no. The authors examined how attention to affect ruptures humanist logics that inform normative approaches to literacy. Through attention to nonconscious, noncognitive, and transindividual bodily forces and capacities, affect deprivileges the human as the sole agent in an interaction, thus disrupting measurements of who counts as a literate subject and what counts as a literacy event. No is an affective moment. It can signal a pushback, an absence, or a silence. As a theoretical and methodological way of thinking/feeling with literacy, affect proposes problems rather than solutions, countering solution-focused research in which the resistance is to be overcome, co-opted, or solved. Affect operates as a crack or a chink, a tiny ripple, a barely perceivable gesture, that can persist and, in doing so, hold open the possibility for alternative futures
Schools, teachers and community: cultivating the conditions for engaged student learning
This paper reveals the nature of the actions, discussions and relationships which characterised teachers' and associated school personnel's efforts to engage poor and refugee students through a community garden located in a school in a low socio-economic urban area in south-east Queensland, Australia. These actions, discussions and relationships are described as both revealing and producing particular 'practice architectures' which help constitute conditions for practice-in this case, conditions for beneficial student learning. The paper draws upon interview data with teachers, other school staff and community members working in the school to reveal the interrelating actions, discussions and relationships involved in developing and using the garden for academic and non-academic purposes. By better understanding such interrelationships as practice architectures, the paper reveals how teachers and those in schooling settings learn to facilitate student learning practices that likely to assist some of the most marginalised students in schooling settings
- …
