14 research outputs found

    A rapid, sensitive colorimetric assay for the high-throughput screening of transaminases in liquid or solid-phase

    Get PDF
    A new colorimetric method has been developed to screen transaminases using an inexpensive amine donor. The assay is sensitive, has a low level of background coloration, and can be used to identify and profile transaminase activities against aldehyde and ketone substrates in a high-throughput format. Significantly it is also amendable to solid phase colony screening

    Efficient production of the Nylon 12 monomer ω-aminododecanoic acid methyl ester from renewable dodecanoic acid methyl ester with engineered Escherichia coli

    Get PDF
    The expansion of microbial substrate and product scopes will be an important brick promoting future bioeconomy. In this study, an orthogonal pathway running in parallel to native metabolism and converting renewable dodecanoic acid methyl ester (DAME) via terminal alcohol and aldehyde to 12-aminododecanoic acid methyl ester (ADAME), a building block for the high-performance polymer Nylon 12, was engineered in Escherichia coli and optimized regarding substrate uptake, substrate requirements, host strain choice, flux, and product yield. Efficient DAME uptake was achieved by means of the hydrophobic outer membrane porin AlkL increasing maximum oxygenation and transamination activities 8.3 and 7.6-fold, respectively. An optimized coupling to the pyruvate node via a heterologous alanine dehydrogenase enabled efficient intracellular L-alanine supply, a prerequisite for self-sufficient whole-cell transaminase catalysis. Finally, the introduction of a respiratory chain-linked alcohol dehydrogenase enabled an increase in pathway flux, the minimization of undesired overoxidation to the respective carboxylic acid, and thus the efficient formation of ADAME as main product. The completely synthetic orthogonal pathway presented in this study sets the stage for Nylon 12 production from renewables. Its effective operation achieved via fine tuning the connectivity to native cell functionalities emphasizes the potential of this concept to expand microbial substrate and product scopes

    Single active-site mutants are sufficient to enhance serine:pyruvate α-transaminase activity in an ω-transaminase

    Get PDF
    We have analysed the natural evolution of transaminase structure and sequence between an α-transaminase serine-pyruvate aminotransferase, and an ω-transaminase from Chromobacterium violaceum with <20% sequence identity, and identified the active-site regions which are least conserved structurally. We also show that these structural changes correlate strongly with transaminase substrate specificity during evolution and therefore might normally be presumed to be essential determinants of substrate specificity. However, key residues are often conserved spatially during evolution and yet come from within a different region of the sequence via structural reorganisations. Here we also show that α-transaminase-type serine-pyruvate aminotransferase activity, can be engineered into the CV2025 ω-transaminase scaffold with any one of many possible single point mutations at three key positions, without the requirement for significant backbone remodeling, or repositioning of the residue from a different region of sequence. This finding has significant implications for enzyme redesign in which solutions to substrate specificity changes may be found that are significantly more efficient than by engineering in all sequence and structure determinants identified by correlation to substrate specificity. This article is protected by copyright. All rights reserved
    corecore