212 research outputs found

    Loop corrected soft photon theorem as a Ward identity

    Get PDF
    Recently Sahoo and Sen obtained a series of remarkable results concerning subleading soft photon and graviton theorems in four dimensions. Even though the S-matrix is infrared divergent, they have shown that the subleading soft theorems are well defined and exact statements in QED and perturbative Quantum Gravity. However unlike the well studied Cachazo-Strominger soft theorems in tree-level amplitudes, the new subleading soft expansion is at the order ln ω (where ω is the soft frequency) and the corresponding soft factors structurally show completely different properties then their tree-level counterparts. Whence it is natural to ask if these theorems are associated to asymptotic symmetries of the S-matrix. We consider this question in the context of sub-leading soft photon theorem in scalar QED and show that there are indeed an infinity of conservation laws whose Ward identities are equivalent to the loop-corrected soft photon theorem. This shows that in the case of four dimensional QED, the leading and sub-leading soft photon theorems are equivalent to Ward identities of (asymptotic) charges

    Asymptotic charges in massless QED revisited: a view from spatial infinity

    Get PDF
    Hamada and Shiu have recently shown that tree level amplitudes in QED satisfy an in nite hierarchy of soft photon theorems, the rst two of which are Weinberg and Low's theorems respectively. In this paper we propose that in tree level massless QED, this entire hierarchy is equivalent to a hierarchy of (asymptotic) conservation laws. We prove the equivalence explicitly for the case of sub-subleading soft photon theorem and give substantial evidence that the equivalence continues to hold for the entire hierarchy. Our work also brings out the (complimentary) relationship between the asymptotic charges associated to soft theorems and the well known Newman-Penrose charges

    Constraint algebra in loop quantum gravity reloaded. II. Toy model of an Abelian gauge theory: Spatial diffeomorphisms

    No full text
    In [1] we initiated an approach towards quantizing the Hamiltonian constraint in Loop Quantum Gravity (LQG) by requiring that it generates an anomaly-free representation of constraint algebra off-shell. We investigated this issue in the case of a toy model of a 2+1-dimensional U(1)3U(1)^{3} gauge theory, which can be thought of as a weak coupling limit of Euclidean three dimensional gravity. However in [1] we only focused on the most non-trivial part of the constraint algebra that involves commutator of two Hamiltonian constraints. In this paper we continue with our analysis and obtain a representation of full constraint algebra in loop quantized framework. We show that there is a representation of the Diffeomorphism group with respect to which the Hamiltonian constraint quantized in [1] is diffeomorphism covariant. Our work can be thought of as a potential first step towards resolving some long standing issues with the Hamiltonian constraint in canonical LQG

    Sub-subleading soft gravitons and large diffeomorphisms

    Get PDF
    We present strong evidence that the sub-subleading soft theorem in semiclassical (tree level) gravity discovered by Cachazo and Strominger is equivalent to the conservation of asymptotic charges associated to a new class of vector fields not contained within the previous extensions of BMS algebra. Our analysis crucially relies on analyzing the hitherto established equivalences between soft theorems and Ward identities from a new perspective. In this process we naturally (re)discover a class of ‘magnetic’ charges at null infinity that are associated to the dual of the Weyl tensor

    Subleading soft photons and large gauge transformations

    Get PDF
    Lysov, Pasterski and Strominger have shown how Low’s subleading soft photon theorem can be understood as Ward identities of new symmetries of massless QED. In this paper we offer a different perspective and show that there exists a class of large U(1) gauge transformations such that (i) the associated (electric and magnetic) charges can be computed from first principles, (ii) their Ward identities are equivalent to Low’s theorem. Our framework paves the way to analyze the sub-subleading theorem in gravity in terms of Ward identities associated to large diffeomorphisms

    Constraint algebra in LQG reloaded : Toy model of a U(1)^{3} Gauge Theory I

    Full text link
    We analyze the issue of anomaly-free representations of the constraint algebra in Loop Quantum Gravity (LQG) in the context of a diffeomorphism-invariant gauge theory in three spacetime dimensions. We construct a Hamiltonian constraint operator whose commutator matches with a quantization of the classical Poisson bracket involving structure functions. Our quantization scheme is based on a geometric interpretation of the Hamiltonian constraint as a generator of phase space-dependent diffeomorphisms. The resulting Hamiltonian constraint at finite triangulation has a conceptual similarity with the "mu-bar"-scheme in loop quantum cosmology and highly intricate action on the spin-network states of the theory. We construct a subspace of non-normalizable states (distributions) on which the continuum Hamiltonian constraint is defined which leads to an anomaly-free representation of the Poisson bracket of two Hamiltonian constraints in loop quantized framework.Comment: 60 pages, 6 figure

    Polymer Parametrised Field Theory

    Full text link
    Free scalar field theory on 2 dimensional flat spacetime, cast in diffeomorphism invariant guise by treating the inertial coordinates of the spacetime as dynamical variables, is quantized using LQG type `polymer' representations for the matter field and the inertial variables. The quantum constraints are solved via group averaging techniques and, analogous to the case of spatial geometry in LQG, the smooth (flat) spacetime geometry is replaced by a discrete quantum structure. An overcomplete set of Dirac observables, consisting of (a) (exponentials of) the standard free scalar field creation- annihilation modes and (b) canonical transformations corresponding to conformal isometries, are represented as operators on the physical Hilbert space. None of these constructions suffer from any of the `triangulation' dependent choices which arise in treatments of LQG. In contrast to the standard Fock quantization, the non- Fock nature of the representation ensures that the algebra of conformal isometries as well as that of spacetime diffeomorphisms are represented in an anomaly free manner. Semiclassical states can be analysed at the gauge invariant level. It is shown that `physical weaves' necessarily underly such states and that such states display semiclassicality with respect to, at most, a countable subset of the (uncountably large) set of observables of type (a). The model thus offers a fertile testing ground for proposed definitions of quantum dynamics as well as semiclassical states in LQG.Comment: 44 pages, no figure

    Polymer quantization of the free scalar field and its classical limit

    Full text link
    Building on prior work, a generally covariant reformulation of free scalar field theory on the flat Lorentzian cylinder is quantized using Loop Quantum Gravity (LQG) type `polymer' representations. This quantization of the {\em continuum} classical theory yields a quantum theory which lives on a discrete spacetime lattice. We explicitly construct a state in the polymer Hilbert space which reproduces the standard Fock vacuum- two point functions for long wavelength modes of the scalar field. Our construction indicates that the continuum classical theory emerges under coarse graining. All our considerations are free of the "triangulation" ambiguities which plague attempts to define quantum dynamics in LQG. Our work constitutes the first complete LQG type quantization of a generally covariant field theory together with a semi-classical analysis of the true degrees of freedom and thus provides a perfect infinite dimensional toy model to study open issues in LQG, particularly those pertaining to the definition of quantum dynamics.Comment: 58 page

    Malnutrition in hospitalised patients; a real concern in surgical outcomes

    Get PDF
    Background:Lack of appropriate nutritional support during hospitalization may worsen patients’ nutritional status and increases risk for infection, organ failure, decreased wound healing and suboptimal response to regular medical treatment. The prevalence and intensity of hospital malnutrition have been recognized as an important parameter in the outcome of disease. The study aimed at to determine incidence of malnutrition in hospitalized patients, the change in nutrition status during hospital stay and its effects on outcome of disease.Methods: It was a prospective study and conducted at a tertiary care hospital. Total 70 patients were studied. Each patient's nutritional status was determined from anthropometric data - body mass index, triceps skinfold thickness, mid-arm circumference, mid arm muscle circumference, MNA scoring, serum protein level changes during hospital stay. The next recording was done at 15 days and 30 days after discharge. Student’s t is test used for statistical analysis.Results:The statistical difference for various parameters of nutritional status was found significant at admission and discharge.Conclusions: The change in various parameter of nutritional status was observed in hospitalized patients. The treatment should be aimed at treating specific disorders along with nutritional correction. It is recommended to have dietary plans at the time of admission in consultation with the dietician.
    corecore