366 research outputs found

    “Gap hunting” to characterize clustered probe signals in Illumina methylation array data

    Get PDF
    Additional file 6: Figures S26–S31. All remaining SBE site scenarios. Each additional scenario of a SBE site-mapping SNP delimited in Fig. 4 not including the scenario shown in Fig. 5. Each of these figures contains 4 plots, showing every combination of CpG site interrogations on the forward and reverse strand as well as which nucleotide is the reference nucleotide

    DNA Methylation Signatures within the Human Brain

    Get PDF
    DNA methylation is a heritable modification of genomic DNA central to development, imprinting, transcriptional regulation, chromatin structure, and overall genomic stability. Aberrant DNA methylation of individual genes is a hallmark of cancer and has been shown to play an important role in neurological disorders such as Rett syndrome. Here, we asked whether normal DNA methylation might distinguish individual brain regions. We determined the quantitative DNA methylation levels of 1,505 CpG sites representing 807 genes with diverse functions, including proliferation and differentiation, previously shown to be implicated in human cancer. We initially analyzed 76 brain samples representing cerebral cortex (n=35), cerebellum (n=34), and pons (n=7), along with liver samples (n=3) from 43 individuals. Unsupervised hierarchical analysis showed clustering of 33 of 35 cerebra distinct from the clustering of 33 of 34 cerebella, 7 of 7 pons, and all 3 livers. By use of comparative marker selection and permutation testing, 156 loci representing 118 genes showed statistically significant differences—a ⩾17% absolute change in DNA methylation (P<.004)—among brain regions. These results were validated for all six genes tested in a replicate set of 57 samples. Our data suggest that DNA methylation signatures distinguish brain regions and may help account for region-specific functional specialization

    Presence of an epigenetic signature of prenatal cigarette smoke exposure in childhood

    Get PDF
    Prenatal exposure to tobacco smoke has lifelong health consequences. Epigenetic signatures such as differences in DNA methylation (DNAm) may be a biomarker of exposure and, further, might have functional significance for how in utero tobacco exposure may influence disease risk. Differences in infant DNAm associated with maternal smoking during pregnancy have been identified. Here we assessed whether these infant DNAm patterns are detectible in early childhood, whether they are specific to smoking, and whether childhood DNAm can classify prenatal smoke exposure status. Using the Infinium 450 K array, we measured methylation at 26 CpG loci that were previously associated with prenatal smoking in infant cord blood from 572 children, aged 3–5, with differing prenatal exposure to cigarette smoke in the Study to Explore Early Development (SEED). Striking concordance was found between the pattern of prenatal smoking associated DNAm among preschool aged children in SEED and those observed at birth in other studies. These DNAm changes appear to be tobacco-specific. Support vector machine classification models and 10-fold cross-validation were applied to show classification accuracy for childhood DNAm at these 26 sites as a biomarker of prenatal smoking exposure. Classification models showed prenatal exposure to smoking can be assigned with 81% accuracy using childhood DNAm patterns at these 26 loci. These findings support the potential for blood-derived DNAm measurements to serve as biomarkers for prenatal exposure

    Cadmium, Smoking, and Human Blood DNA Methylation Profiles in Adults from the Strong Heart Study.

    Get PDF
    The epigenetic effects of individual environmental toxicants in tobacco remain largely unexplored. Cadmium (Cd) has been associated with smoking-related health effects, and its concentration in tobacco smoke is higher in comparison with other metals. We studied the association of Cd and smoking exposures with human blood DNA methylation (DNAm) profiles. We also evaluated the implication of findings to relevant methylation pathways and the potential contribution of Cd exposure from smoking to explain the association between smoking and site-specific DNAm. We conducted an epigenome-wide association study of urine Cd and self-reported smoking (current and former vs. never, and cumulative smoking dose) with blood DNAm in 790,026 CpGs (methylation sites) measured with the Illumina Infinium Human MethylationEPIC (Illumina Inc.) platform in 2,325 adults 45-74 years of age who participated in the Strong Heart Study in 1989-1991. In a mediation analysis, we estimated the amount of change in DNAm associated with smoking that can be independently attributed to increases in urine Cd concentrations from smoking. We also conducted enrichment analyses and in silico protein-protein interaction networks to explore the biological relevance of the findings. At a false discovery rate (FDR)-corrected level of 0.05, we found 6 differentially methylated positions (DMPs) for Cd; 288 and 17, respectively, for current and former smoking status; and 77 for cigarette pack-years. Enrichment analyses of these DMPs displayed enrichment of 58 and 6 Gene Ontology and Kyoto Encyclopedia of Genes and Genomes gene sets, respectively, including biological pathways for cancer and cardiovascular disease. In in silico protein-to-protein networks, we observed key proteins in DNAm pathways directly and indirectly connected to Cd- and smoking-DMPs. Among DMPs that were significant for both Cd and current smoking (annotated to PRSS23, AHRR, F2RL3, RARA, and 2q37.1), we found statistically significant contributions of Cd to smoking-related DNAm. Beyond replicating well-known smoking epigenetic signatures, we found novel DMPs related to smoking. Moreover, increases in smoking-related Cd exposure were associated with differential DNAm. Our integrative analysis supports a biological link for Cd and smoking-associated health effects, including the possibility that Cd is partly responsible for smoking toxicity through epigenetic changes. https://doi.org/10.1289/EHP6345.This work was supported by grants by the National Heart, Lung, and Blood Institute (NHLBI) (under contract numbers 75N92019D00027, 75N92019D00028, 75N92019D00029, & 75N92019D00030) and previous grants (R01HL090863, R01HL109315, R01HL109301, R01HL109284, R01HL109282, and R01HL109319 and cooperative agreements U01HL41642, U01HL41652, U01HL41654, U01HL65520, and U01HL65521), by the National Institute of Health Sciences (R01ES021367, R01ES025216, P42ES010349, P30ES009089), by the Spanish Funds for Research In Health Sciences, Carlos III Health Institute, co-funded by European Regional Development Fund (CP12/03080 and PI15/00071), by Chilean CONICYT/FONDECYT-POSTDOCTORADO Nº3180486 (A.L.R.-C) and a fellowship from “La Caixa” Foundation (ID 100010434). The fellowship code is “LCF/BQ/DR19/11740016.”S

    Establishing a generalized polyepigenetic biomarker for tobacco smoking

    Get PDF
    Large-scale epigenome-wide association meta-analyses have identified multiple 'signatures'' of smoking. Drawing on these findings, we describe the construction of a polyepigenetic DNA methylation score that indexes smoking behavior and that can be utilized for multiple purposes in population health research. To validate the score, we use data from two birth cohort studies: The Dunedin Longitudinal Study, followed to age-38 years, and the Environmental Risk Study, followed to age-18 years. Longitudinal data show that changes in DNA methylation accumulate with increased exposure to tobacco smoking and attenuate with quitting. Data from twins discordant for smoking behavior show that smoking influences DNA methylation independently of genetic and environmental risk factors. Physiological data show that changes in DNA methylation track smoking-related changes in lung function and gum health over time. Moreover, DNA methylation changes predict corresponding changes in gene expression in pathways related to inflammation, immune response, and cellular trafficking. Finally, we present prospective data about the link between adverse childhood experiences (ACEs) and epigenetic modifications; these findings document the importance of controlling for smoking-related DNA methylation changes when studying biological embedding of stress in life-course research. We introduce the polyepigenetic DNA methylation score as a tool both for discovery and theory-guided research in epigenetic epidemiology.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.The Dunedin Longitudinal Study is funded by the New Zealand Health Research Council, the New Zealand Ministry of Business, Innovation, and Employment, the National Institute on Aging (AG032282), and the Medical Research Council (MR/P005918/1). The E-Risk Study is funded by the Medical Research Council (G1002190) and the National Institute of Child Health and Human Development (HD077482). Additional support was provided by a Distinguished Investigator Award from the American Asthma Foundation to Dr. Mill, and by the Jacobs Foundation and the Avielle Foundation. Dr. Arseneault is the Mental Health Leadership Fellow for the U.K. Economic and Social Research Council. Dr. Belsky is a Jacobs Foundation Fellow. This work used a high-performance computing facility partially supported by grant 2016-IDG-1013 (“HARDAC + : Reproducible HPC for Next-generation Genomics”) from the North Carolina Biotechnology Center. Illumina DNA methylation data are accessible from the Gene Expression Omnibus (accession code: GSE105018).pre-print, post-print, publisher's PD

    Variable DNA methylation in neonates mediates the association between prenatal smoking and birth weight

    Get PDF
    There is great interest in the role epigenetic variation induced by non-genetic exposures may play in the context of health and disease. In particular, DNA methylation has previously been shown to be highly dynamic during the earliest stages of development and is influenced by in utero exposures such as maternal smoking and medication. In this study we sought to identify the specific DNA methylation differences in blood associated with prenatal and birth factors, including birth weight, gestational age and maternal smoking. We quantified neonatal methylomic variation in 1263 infants using DNA isolated from a unique collection of archived blood spots taken shortly after birth (mean = 6.08 days; s.d. = 3.24 days). An epigenome-wide association study (EWAS) of gestational age and birth weight identified 4299 and 18 differentially methylated positions (DMPs) respectively, at an experiment-wide significance threshold of p < 1 Ă— 10-7. Our EWAS of maternal smoking during pregnancy identified 110 DMPs in neonatal blood, replicating previously reported genomic loci, including AHRR. Finally, we tested the hypothesis that DNA methylation mediates the relationship between maternal smoking and lower birth weight, finding evidence that methylomic variation at three DMPs may link exposure to outcome. These findings complement an expanding literature on the epigenomic consequences of prenatal exposures and obstetric factors, confirming a link between the maternal environment and gene regulation in neonates. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.This study was supported by grant no. HD073978 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Environmental Health Sciences, and National Institute of Neurological Disorders and Stroke; and by the Beatrice and Samuel A. Seaver Foundation. The iPSYCH (The Lundbeck Foundation Initiative for Integrative Psychiatric Research) team acknowledges funding from The Lundbeck Foundation (grant no. R102-A9118 and R155-2014-1724), the Stanley Medical Research Institute, the European Research Council (project no: 294838), the Novo Nordisk Foundation for supporting the Danish National Biobank resource, and grants from Aarhus and Copenhagen Universities and University Hospitals, including support to the iSEQ Center, the GenomeDK HPC facility, and the CIRRAU Center. This research has been conducted using the Danish National Biobank resource, supported by the Novo Nordisk Foundation. J.M. and E.H. are supported by funding from the UK Medical Research Council (K013807).published version, accepted version, submitted versio

    The Changing Epidemiology of Autism Spectrum Disorders

    Get PDF
    Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with lifelong impacts. Genetic and environmental factors contribute to ASD etiology, which remains incompletely understood. Research on ASD epidemiology has made significant advances in the past decade. Current prevalence is estimated to be at least 1.5% in developed countries, with recent increases primarily among those without comorbid intellectual disability. Genetic studies have identified a number of rare de novo mutations and gained footing in the areas of polygenic risk, epigenetics, and gene-by-environment interaction. Epidemiologic investigations focused on nongenetic factors have established advanced parental age and preterm birth as ASD risk factors, indicated that prenatal exposure to air pollution and short interpregnancy interval are potential risk factors, and suggested the need for further exploration of certain prenatal nutrients, metabolic conditions, and exposure to endocrine-disrupting chemicals. We discuss future challenges and goals for ASD epidemiology as well as public health implications
    • …
    corecore