2,714 research outputs found
A new model for simulating colloidal dynamics
We present a new hybrid lattice-Boltzmann and Langevin molecular dynamics
scheme for simulating the dynamics of suspensions of spherical colloidal
particles. The solvent is modeled on the level of the lattice-Boltzmann method
while the molecular dynamics is done for the solute. The coupling between the
two is implemented through a frictional force acting both on the solvent and on
the solute, which depends on the relative velocity. A spherical colloidal
particle is represented by interaction sites at its surface. We demonstrate
that this scheme quantitatively reproduces the translational and rotational
diffusion of a neutral spherical particle in a liquid and show preliminary
results for a charged spherical particle. We argue that this method is
especially advantageous in the case of charged colloids.Comment: For a movie click on the link below Fig
Electrophoretic mobility of a charged colloidal particle: A computer simulation study
We study the mobility of a charged colloidal particle in a constant
homogeneous electric field by means of computer simulations. The simulation
method combines a lattice Boltzmann scheme for the fluid with standard Langevin
dynamics for the colloidal particle, which is built up from a net of bonded
particles forming the surface of the colloid. The coupling between the two
subsystems is introduced via friction forces. In addition explicit counterions,
also coupled to the fluid, are present. We observe a non-monotonous dependence
of the electrophoretic mobility on the bare colloidal charge. At low surface
charge density we observe a linear increase of the mobility with bare charge,
whereas at higher charges, where more than half of the ions are co-moving with
the colloid, the mobility decreases with increasing bare charge.Comment: 15 pages, 8 figure
A lattice mesoscopic model of dynamically heterogeneous fluids
We introduce a mesoscopic three-dimensional Lattice Boltzmann Model which
attempts to mimick the physical features associated with cage effects in
dynamically heterogeneous fluids. To this purpose, we extend the standard
Lattice Boltzmann dynamics with self-consistent constraints based on the
non-local density of the surrounding fluid. The resulting dynamics exhibits
typical features of dynamic heterogeneous fluids, such as non-Gaussian density
distributions and long-time relaxation. Due to its intrinsically parallel
dynamics, and absence of statistical noise, the method is expected to compute
significantly faster than molecular dynamics, Monte Carlo and lattice glass
models.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let
Quantum computers based on electron spins controlled by ultra-fast, off-resonant, single optical pulses
We describe a fast quantum computer based on optically controlled electron
spins in charged quantum dots that are coupled to microcavities. This scheme
uses broad-band optical pulses to rotate electron spins and provide the clock
signal to the system. Non-local two-qubit gates are performed by phase shifts
induced by electron spins on laser pulses propagating along a shared waveguide.
Numerical simulations of this scheme demonstrate high-fidelity single-qubit and
two-qubit gates with operation times comparable to the inverse Zeeman
frequency.Comment: 4 pages, 4 figures, introduction is clarified, the section on
two-qubit gates was expanded and much more detail about gate fidelities is
given, figures were modified, one figure replaced with a figure showing gate
fidelities for relevant parameter
Multi-spin dynamics of the solid-state NMR Free Induction Decay
We present a new experimental investigation of the NMR free induction decay
(FID) in a lattice of spin-1/2 nuclei in a strong Zeeman field. Following a
pi/2 pulse, evolution under the secular dipolar Hamiltonian preserves coherence
number in the Zeeman eigenbasis, but changes the number of correlated spins in
the state. The observed signal is seen to decay as single-spin, single-quantum
coherences evolve into multiple-spin coherences under the action of the dipolar
Hamiltonian. In order to probe the multiple-spin dynamics during the FID, we
measured the growth of coherence orders in a basis other than the usual Zeeman
eigenbasis. This measurement provides the first direct experimental observation
of the growth of coherent multiple-spin correlations during the FID.
Experiments were performed with a cubic lattice of spins (19F in calcium
fluoride) and a linear spin chain (19F in fluorapatite). It is seen that the
geometrical arrangement of the spins plays a significant role in the
development of higher order correlations. The results are discussed in light of
existing theoretical models.Comment: 7 pages, 6 figure
Transport Phenomena and Structuring in Shear Flow of Suspensions near Solid Walls
In this paper we apply the lattice-Boltzmann method and an extension to
particle suspensions as introduced by Ladd et al. to study transport phenomena
and structuring effects of particles suspended in a fluid near sheared solid
walls. We find that a particle free region arises near walls, which has a width
depending on the shear rate and the particle concentration. The wall causes the
formation of parallel particle layers at low concentrations, where the number
of particles per layer decreases with increasing distance to the wall.Comment: 14 pages, 14 figure
Star formation in Perseus
We present a complete survey of current star formation in the Perseus
molecular cloud, made at 850 and 450 micron with SCUBA at the JCMT. Covering 3
deg^2, this submillimetre continuum survey for protostellar activity is second
in size only to that of rho Ophiuchus (Johnstone et al. 2004). Complete above
0.4 msun (5 sigma detection in a 14'' beam), we detect a total of 91 protostars
and prestellar cores. Of these, 80% lie in clusters, representative of star
formation across the Galaxy. Two of the groups of cores are associated with the
young stellar clusters IC348 and NGC1333, and are consistent with a steady or
reduced star formation rate in the last 0.5 Myr, but not an increasing one. In
Perseus, 40--60% of cores are in small clusters (< 50 msun) and isolated
objects, much more than the 10% suggested from infrared studies. Complementing
the dust continuum, we present a C^18O map of the whole cloud at 1' resolution.
The gas and dust show filamentary structure of the dense gas on large and small
scales, with the high column density filaments breaking up into clusters of
cores. The filament mass per unit length is 5--11 msun per 0.1 pc. Given these
filament masses, there is no requirement for substantial large scale flows
along or onto the filaments in order to gather sufficient material for star
formation. We find that the probability of finding a submillimetre core is a
strongly increasing function of column density, as measured by C^18O integrated
intensity, prob(core) proportional to I^3.0. This power law relation holds down
to low column density, suggesting that there is no A_v threshold for star
formation in Perseus, unless all the low-A_v submm cores can be demonstrated to
be older protostars which have begun to lose their natal molecular cloud.Comment: 15 pages, 5 figures, bibtex file scubasf_astroph.bbl, included tex
files SSA-clusters-sorted-tidy.te
Notions and subnotions in information structure
Three dimensions can be distinguished in a cross-linguistic account of information structure. First, there is the definition of the focus constituent, the part of the linguistic expression which is subject to some focus meaning. Second and third, there are the focus meanings and the array of structural devices that encode them. In a given language, the expression of focus is facilitated as well as constrained by the grammar within which the focus devices operate. The prevalence of focus ambiguity, the structural inability to make focus distinctions, will thus vary across languages, and within a language, across focus meanings
Instabilities in the dissolution of a porous matrix
A reactive fluid dissolving the surrounding rock matrix can trigger an
instability in the dissolution front, leading to spontaneous formation of
pronounced channels or wormholes. Theoretical investigations of this
instability have typically focused on a steadily propagating dissolution front
that separates regions of high and low porosity. In this paper we show that
this is not the only possible dissolutional instability in porous rocks; there
is another instability that operates instantaneously on any initial porosity
field, including an entirely uniform one. The relative importance of the two
mechanisms depends on the ratio of the porosity increase to the initial
porosity. We show that the "inlet" instability is likely to be important in
limestone formations where the initial porosity is small and there is the
possibility of a large increase in permeability. In quartz-rich sandstones,
where the proportion of easily soluble material (e.g. carbonate cements) is
small, the instability in the steady-state equations is dominant.Comment: to be published in Geophysical Research Letter
Simulation of thermal conductivity and heat transport in solids
Using molecular dynamics (MD) with classical interaction potentials we
present calculations of thermal conductivity and heat transport in crystals and
glasses. Inducing shock waves and heat pulses into the systems we study the
spreading of energy and temperature over the configurations. Phonon decay is
investigated by exciting single modes in the structures and monitoring the time
evolution of the amplitude using MD in a microcanonical ensemble. As examples,
crystalline and amorphous modifications of Selenium and are
considered.Comment: Revtex, 8 pages, 11 postscript figures, accepted for publication in
PR
- …