774 research outputs found

    The Luminosity & Mass Function of the Trapezium Cluster: From B stars to the Deuterium Burning Limit

    Get PDF
    We use the results of a new, multi-epoch, multi-wavelength, near-infrared census of the Trapezium Cluster in Orion to construct and to analyze the structure of its infrared (K band) luminosity function. Specifically, we employ an improved set of model luminosity functions to derive this cluster's underlying Initial Mass Function (IMF) across the entire range of mass from OB stars to sub-stellar objects down to near the deuterium burning limit. We derive an IMF for the Trapezium Cluster that rises with decreasing mass, having a Salpeter-like IMF slope until near ~0.6 M_sun where the IMF flattens and forms a broad peak extending to the hydrogen burning limit, below which the IMF declines into the sub-stellar regime. Independent of the details, we find that sub-stellar objects account for no more than ~22% of the total number of likely cluster members. Further, the sub-stellar Trapezium IMF breaks from a steady power-law decline and forms a significant secondary peak at the lowest masses (10-20 times the mass of Jupiter). This secondary peak may contain as many as \~30% of the sub-stellar objects in the cluster. Below this sub-stellar IMF peak, our KLF modeling requires a subsequent sharp decline toward the planetary mass regime. Lastly, we investigate the robustness of pre-main sequence luminosity evolution as predicted by current evolutionary models, and we discuss possible origins for the IMF of brown dwarfs.Comment: 74 pages, 30 figures, AASTeX5.0. To be published in the 01 July 2002 ApJ. For color version of figure 1 and online data table see http://www.astro.ufl.edu/~muench/PUB/publications.htm

    Pholidosis Abnormalities and Injuries in the European Pond Turtle (Emys orbicularis) in the Conditions of the Khopersky Nature Reserve

    Get PDF
    Pholidosis abnormalities and injuries were studied through 194 specimens of European pond turtle (Emys orbicularis) in the Khopersky nature reserve (Voronezh Province, Russia) in 2008, 2009 and 2011. Six types of abnormalities (on the carapace only) were detected. The occurrence of individuals with all types of abnormalities, the partial occurrence of various abnormalities and the average number of abnormalities per individual were analyzed. Most individuals showed signs of predator attack, mostly on the carapace and tail. During winter hibernation, animals with limb injuries were noted

    Hunting Galaxies to (and for) Extinction

    Full text link
    In studies of star-forming regions, near-infrared excess (NIRX) sources--objects with intrinsic colors redder than normal stars--constitute both signal (young stars) and noise (e.g. background galaxies). We hunt down (identify) galaxies using near-infrared observations in the Perseus star-forming region by combining structural information, colors, and number density estimates. Galaxies at moderate redshifts (z = 0.1 - 0.5) have colors similar to young stellar objects (YSOs) at both near- and mid-infrared (e.g. Spitzer) wavelengths, which limits our ability to identify YSOs from colors alone. Structural information from high-quality near-infrared observations allows us to better separate YSOs from galaxies, rejecting 2/5 of the YSO candidates identified from Spitzer observations of our regions and potentially extending the YSO luminosity function below K of 15 magnitudes where galaxy contamination dominates. Once they are identified we use galaxies as valuable extra signal for making extinction maps of molecular clouds. Our new iterative procedure: the Galaxies Near Infrared Color Excess method Revisited (GNICER), uses the mean colors of galaxies as a function of magnitude to include them in extinction maps in an unbiased way. GNICER increases the number of background sources used to probe the structure of a cloud, decreasing the noise and increasing the resolution of extinction maps made far from the galactic plane.Comment: 16 pages and 16 figures. Accepted for publication in ApJ. Full resolution version at http://www.cfa.harvard.edu/COMPLETE/papers/Foster_HuntingGalaxies.pd

    Looking for Distributed Star Formation in L1630: A Near-infrared (J, H, K) Survey

    Get PDF
    We have carried out a simultaneous, multi-band (J, H, K) survey over an area of 1320 arcmin^2 in the L1630 region, concentrating on the region away from the dense molecular cores and with modest visual extinctions (\leq 10 mag). Previous studies found that star formation in L1630 occurs mainly in four localized clusters, which in turn are associated with the four most massive molecular cores (Lada et al. 1991; Lada 1992). The goal of this study is to look for a distributed population of pre-main-sequence stars in the outlying areas outside the known star-forming cores. More than 60% of the pre-main-sequence stars in the active star forming regions of NGC 2024 and NGC 2023 show a near-infrared excess in the color-color diagram. In the outlying areas of L1630, excluding the known star forming regions, we found that among 510 infrared sources with the near-infrared colors ((J-H) and (H-K)) determined and photometric uncertainty at K better than 0.10 mag, the fraction of the sources with a near-infrared excess is 3%--8%; the surface density of the sources with a near-infrared excess is less than half of that found in the distributed population in L1641, and 1/20 of that in the young cluster NGC 2023. This extremely low fraction and low surface density of sources with a near-infrared excess strongly indicates that recent star formation activity has been very low in the outlying region of L1630. The sources without a near-infrared excess could be either background/foreground field stars, or associated with the cloud, but formed a long time ago (more than 2 Myrs). Our results are consistent with McKee's model of photoionization-regulated star formation.Comment: 30 pages, 10 figures To appear in ApJ Oct 1997, Vol 48

    A Census of the Young Cluster IC 348

    Full text link
    We present a new census of the stellar and substellar members of the young cluster IC 348. We have obtained images at I and Z for a 42'x28' field encompassing the cluster and have combined these measurements with previous optical and near-infrared photometry. From spectroscopy of candidate cluster members appearing in these data, we have identified 122 new members, 15 of which have spectral types of M6.5-M9, corresponding to masses of 0.08-0.015 M_sun by recent evolutionary models. The latest census for IC 348 now contains a total of 288 members, 23 of which are later than M6 and thus are likely to be brown dwarfs. From an extinction-limited sample of members (A_V<=4) for a 16'x14' field centered on the cluster, we construct an IMF that is unbiased in mass and nearly complete for M/M_sun>=0.03 (<=M8). In logarithmic units where the Salpeter slope is 1.35, the mass function for IC 348 rises from high masses down to a solar mass, rises more slowly down to a maximum at 0.1-0.2 M_sun, and then declines into the substellar regime. In comparison, the similarly-derived IMF for Taurus from Briceno et al. and Luhman et al. rises quickly to a peak near 0.8 M_sun and steadily declines to lower masses. The distinctive shapes of the IMFs in IC 348 and Taurus are reflected in the distributions of spectral types, which peak at M5 and K7, respectively. These data provide compelling, model-independent evidence for a significant variation of the IMF with star-forming conditions.Comment: 47 pages, 14 figures, 3rd para of 4.5.3 has been added, this is final version in press at ApJ, also found at http://cfa-www.harvard.edu/sfgroup/preprints.htm
    corecore