8,182 research outputs found

    Interest of site-specific pollution control policies

    Get PDF
    Owing to increasing environmental concerns the current trend is to bend technical production systems in order to adapt them to the specific characteristics of the milieu and diversify them. Inherent to such dynamics is the issue of how to design the accompanying environmental policies. Theoretically, spatially targeted environmental policies are considered optimal, since economic agents tune their efforts according to the sensitivity of the milieu where they operate. But, according to empirical analyses, this advantage is undermined by the high cost of implementation, monitoring and enforcement. This paper outlines the conditions required for site-specific policies to be effective at least cost. Our starting point is the nitrate pollution of water from agriculture, which varies according to climate, soil type and agricultural production system. Farm management practices enabling to reduce pollution depend on this variability. An interdisciplinary study of the efficiency of differentiating the way this pollution is regulated was carried out on two sites in France. It focussed on assessing the importance of spatial variability in physical parameters and in private and social costs.NONPOINT POLLUTION; SITE SPECIFIC TECHNOLOGY; SITE SPECIFIC ENVIRONMENTAL POLICY; ABATEMENT COST; TRANSACTION COST

    Elective Induction Of Labor

    Get PDF

    Bimodality as a signal of Liquid-Gas phase transition in nuclei?

    Full text link
    We use the HIPSE (Heavy-Ion Phase-Space Exploration) Model to discuss the origin of the bimodality in charge asymmetry observed in nuclear reactions around the Fermi energy. We show that it may be related to the important angular momentum (spin) transferred into the quasi-projectile before secondary decay. As the spin overcomes the critical value, a sudden opening of decay channels is induced and leads to a bimodal distribution for the charge asymmetry. In the model, it is not assigned to a liquid-gas phase transition but to specific instabilities in nuclei with high spin. Therefore, we propose to use these reactions to study instabilities in rotating nuclear droplets.Comment: 4 pages, 4 figures Accepted to PR

    High Dimensional Classification with combined Adaptive Sparse PLS and Logistic Regression

    Get PDF
    Motivation: The high dimensionality of genomic data calls for the development of specific classification methodologies, especially to prevent over-optimistic predictions. This challenge can be tackled by compression and variable selection, which combined constitute a powerful framework for classification, as well as data visualization and interpretation. However, current proposed combinations lead to instable and non convergent methods due to inappropriate computational frameworks. We hereby propose a stable and convergent approach for classification in high dimensional based on sparse Partial Least Squares (sparse PLS). Results: We start by proposing a new solution for the sparse PLS problem that is based on proximal operators for the case of univariate responses. Then we develop an adaptive version of the sparse PLS for classification, which combines iterative optimization of logistic regression and sparse PLS to ensure convergence and stability. Our results are confirmed on synthetic and experimental data. In particular we show how crucial convergence and stability can be when cross-validation is involved for calibration purposes. Using gene expression data we explore the prediction of breast cancer relapse. We also propose a multicategorial version of our method on the prediction of cell-types based on single-cell expression data. Availability: Our approach is implemented in the plsgenomics R-package.Comment: 9 pages, 3 figures, 4 tables + Supplementary Materials 8 pages, 3 figures, 10 table

    Chiral two-dimensional electron gas in a periodic magnetic field

    Full text link
    We study the energy spectrum and electronic properties of two-dimensional electron gas in a periodic magnetic field of zero average with a symmetry of triangular lattice. We demonstrate how the structure of electron energy bands can be changed with the variation of the field strength, so that we can start from nearly free electron gas and then transform it continuously to a system of essentially localized chiral electron states. We find that the electrons near some minima of the effective potential are responsible for occurrence of dissipationless persistent currents creating a lattice of current contours. The topological properties of the electron energy bands are also varied with the intensity of periodic field. We calculated the topological Chern numbers of several lower energy bands as a function of the field. The corresponding Hall conductivity is nonzero and, when the Fermi level lies in the gap, it is quantized.Comment: 10 pages;9 figures;42 reference

    Orbital-quenching-induced magnetism in Ba_2NaOsO_6

    Full text link
    The double perovskite \bnoo with heptavalent Os (d1d^1) is observed to remain in the ideal cubic structure ({\it i.e.} without orbital ordering) despite single occupation of the t2gt_{2g} orbitals, even in the ferromagnetically ordered phase below 6.8 K. Analysis based on the {\it ab initio} dispersion expressed in terms of an Os t2gt_{2g}-based Wannier function picture, spin-orbit coupling, Hund's coupling, and strong Coulomb repulsion shows that the magnetic OsO6_6 cluster is near a moment-less condition due to spin and orbital compensation. Quenching (hybridization) then drives the emergence of the small moment. This compensation, unprecedented in transition metals, arises in a unified picture that accounts for the observed Mott insulating behavior.Comment: in press at Europhysics Letter

    Obstetrical Management Of The Pregnant Cardiac Patient

    Get PDF

    Public Participation in Water Planning in the Ebro River Basin (Spain) and Tucson Basin (U.S., Arizona) : Impact on Water Policy and Adaptive Capacity Building

    Get PDF
    The benefits of public participation in water management are recognized by governments, scholars, and stakeholders. These benefits, however, do not result from all engagement endeavors. This leads to the question: What are the determinants for effective public participation? Given a list of criteria for achieving the transformational capacity of participation, we analyze the benefits (including the influence on public policies) gained through public participation and the determinant factors for obtaining these benefits in the Ebro River Basin in Spain and in the Tucson Basin in Arizona (U.S.). Furthermore, and considering that droughts and floods are major water management challenges in both case studies, we focus on the potential of participation to build adaptive capacity. Our analysis of these case studies concludes that influence on public policies is determined more by the context of the participatory process, i.e., legal framework, political leadership, and social awareness, whereas influence on adaptive capacity building depends more on the characteristics of the participatory process, particularly the existence of active on-site consultation and deliberation

    Effects of live-bait shrimp trawling on seagrass beds and fish bycatch in Tampa Bay, Florida

    Get PDF
    The use of live shrimp for bait in recreational fishing has resulted in a controversial fishery for shrimp in Florida. In this fishery, night collections are conducted over seagrass beds with roller beam trawls to capture live shrimp, primarily pink shrimp, Penaeus duorarum. These shrimp are culled from the catch on sorting tables and placed in onboard aerated “live” wells. Beds of turtlegrass, Thalassia testudinum, a species that has highest growth rates and biomass during summer and lowest during the winter (Fonseca et al., 1996) are predominant areas for live-bait shrimp trawling (Tabb and Kenny, 1969). Our study objectives were 1) to determine effects of a roller beam trawl on turtlegrass biomass and morphometrics during intensive (up to 18 trawls over a turtlegrass bed), short-term (3-hour duration) use and 2) to examine the mortality of bycatch finfish following capture by a trawl

    Out of equilibrium transport through an Anderson impurity: Probing scaling laws within the equation of motion approach

    Full text link
    We study non-equilibrium electron transport through a quantum impurity coupled to metallic leads using the equation of motion technique at finite temperature T. Assuming that the interactions are taking place solely in the impurity and focusing in the infinite Hubbard limit, we compute the out of equilibrium density of states and the differential conductance G_2(T,V) to test several scaling laws. We find that G_2(T,V)/G_2(T,0) is a universal function of both eV/T_K and T/T_K, being T_K the Kondo temperature. The effect of an in plane magnetic field on the splitting of the zero bias anomaly in the differential conductance is also analyzed. For a Zeeman splitting \Delta, the computed differential conductance peak splitting depends only on \Delta/T_K, and for large fields approaches the value of 2\Delta . Besides the traditional two leads setup, we also consider other configurations that mimics recent experiments, namely, an impurity embedded in a mesoscopic wire and the presence of a third weakly coupled lead. In these cases, a double peak structure of the Kondo resonance is clearly obtained in the differential conductance while the amplitude of the highest peak is shown to decrease as \ln(eV/T_K). Several features of these results are in qualitative agreement with recent experimental observations reported on quantum dots.Comment: 9 pages, 7 figure
    • …
    corecore