1,325 research outputs found

    First NACO observations of the Brown Dwarf LHS 2397aB

    Full text link
    Observations of the standard late type M8 star LHS 2397aA were obtained at the ESO-VLT 8m telescope ``Yepun'' using the NAOS/CONICA Adaptive Optics facility. The observations were taken during the NACO commissioning, and the infrared standard star LHS 2397aA was observed in the H, and Ks broad band filters. In both bands the brown dwarf companion LHS2397aB was detected. Using a program recently developed (Bouy et al., 2003) for the detection of stellar binaries we calculated the principal astrometric parameters (angular binary separation and position angle P.A.) and the photometry of LHS 2397aA and LHS 2397aB. Our study largely confirms previous results obtained with the AO-Hokupa'a facility at Gemini-North (Freed et al., 2003); however a few discrepancies are observed.Comment: 5 page

    Skyrmions and the Nuclear Force

    Full text link
    The derivation of the nucleon-nucleon force from the Skyrme model is reexamined. Starting from previous results for the potential energy of quasistatic solutions, we show that a calculation using the Born-Oppenheimer approximation properly taking into account the mixing of nucleon resonances, leads to substantial central attraction. We obtain a potential that is in qualitative agreement with phenomenological potentials. We also study the non-adiabatic corrections, such as the velocity dependent transition potentials, and discuss their importance.Comment: 24 pages, UPR-0124M

    Dirac Hartree-Fock for Finite Nuclei Employing realistic Forces

    Get PDF
    We discuss two different approximation schemes for the self-consistent solution of the {\it relativistic} Brueckner-Hartree-Fock equation for finite nuclei. In the first scheme, the Dirac effects are deduced from corresponding nuclear matter calculations, whereas in the second approach the local-density approximation is used to account for the effects of correlations. The results obtained by the two methods are very similar. Employing a realistic one-boson-exchange potential (Bonn~A), the predictions for energies and radii of 16^{16}O and 40^{40}Ca come out in substantially better agreement with experiment as compared to non-relativistic approaches. As a by-product of our study, it turns out that the Fock exchange-terms, ignored in a previous investigation, are not negligible.Comment:

    Cross section and analyzing power of pol{p}p -> pn pi+ near threshold

    Full text link
    The cross section and analyzing power of the pol{p}p -> pn pi+ reaction near threshold are estimated in terms of data obtained from the pol{p}p -> d pi+ and pp -> pp pi0 reactions. A simple final state interaction theory is developed which depends weakly upon the form of the pion-production operator and includes some Coulomb corrections. Within the uncertainties of the model and the input data, the approach reproduces well the measured energy dependence of the total cross section and the proton analyzing power at a fixed pion c.m. angle of 90deg, from threshold to T_p = 330 MeV. The variation of the differential cross section with pion angle is also very encouraging.Comment: 20 pages, Latex including 4 eps figure

    Final state interaction effects in mu-capture induced two-body decay of 3He

    Get PDF
    The mu-capture process on 3He leading to a neutron, a deuteron and a mu-neutrino in the final state is studied. Three-nucleon Faddeev wave functions for the initial 3He bound and the final neutron-deuteron scattering states are calculated using the BonnB and Paris nucleon-nucleon potentials. The nuclear weak current operator is restricted to impulse approximation. Large effects on the decay rates of the final state interaction are found. The comparison to recent experimental data shows that the inclusion of final state interactions drastically improves the description of the data.Comment: 14 pages, 6 eps figure

    Chiral corrections to the isovector double scattering term for the pion-deuteron scattering length

    Full text link
    The empirical value of the real part of the pion-deuteron scattering length can be well understood in terms of the dominant isovector πN\pi N-double scattering contribution. We calculate in chiral perturbation theory all one-pion loop corrections to this double scattering term which in the case of πN\pi N-scattering close the gap between the current-algebra prediction and the empirical value of the isovector threshold T-matrix TπNT_{\pi N}^-. In addition to closing this gap there is in the πd\pi d-system a loop-induced off-shell correction for the exchanged virtual pion. Its coordinate space representation reveals that it is equivalent to 2π2\pi-exchange in the deuteron. We evaluate the chirally corrected double scattering term and the off-shell contribution with various realistic deuteron wave functions. We find that the off-shell correction contributes at most -8% and that the isovector double scattering term explains at least 90% of the empirical value of the real part of the πd\pi d-scattering length.Comment: 4 pages, 2 figures, to be published in The Physical Review

    A nonlinear approach to NN interactions using self-interacting meson fields

    Full text link
    Motivated by the success of models based on chiral symmetry in NN interactions we investigate self-interacting scalar, pseudoscalar and vector meson fields and their impact for NN forces. We parametrize the corresponding nonlinear field equations and get analytic wavelike solutions. A probability amplitude for the propagation of particle states is calculated and applied in the framework of a boson-exchange NN potential. Using a proper normalization of the meson fields makes all self-scattering amplitudes finite. The same normalization is able to substitute for the phenomenological form factors used in conventional boson exchange potentials and thus yields an phenomenological understanding of this part of the NN interaction. We find an empirical scaling law which relates the meson self-interaction couplings to the pion mass and self-interaction coupling constant. Our model yields np phase shifts comparable to the Bonn B potential results and deuteron properties, in excellent agreement with experimental data.Comment: Reviewed version, 25 pages REVTeX, more info at http://i04ktha.desy.d

    Sensitivity of nucleon-nucleus scattering to the off-shell behavior of on-shell equivalent NN potentials

    Get PDF
    The sensitivity of nucleon-nucleus elastic scattering to the off-shell behavior of realistic nucleon-nucleon interactions is investigated when on-shell equivalent nucleon-nucleon potentials are used. The study is based on applications of the full-folding optical model potential for an explicit treatment of the off-shell behavior of the nucleon-nucleon effective interaction. Applications were made at beam energies between 40 and 500 MeV for proton scattering from 40Ca and 208Pb. We use the momentum-dependent Paris potential and its local on-shell equivalent as obtained with the Gelfand-Levitan and Marchenko inversion formalism for the two nucleon Schroedinger equation. Full-folding calculations for nucleon-nucleus scattering show small fluctuations in the corresponding observables. This implies that off-shell features of the NN interaction cannot be unambiguously identified with these processes. Inversion potentials were also constructed directly from NN phase-shift data (SM94) in the 0-1.3 GeV energy range. Their use in proton-nucleus scattering above 200 MeV provide a superior description of the observables relative to those obtained from current realistic NN potentials. Limitations and scope of our findings are presented and discussed.Comment: 17 pages tightened REVTeX, 8 .ps figures, submitted to Phys. Rev.

    Modern nucleon-nucleon potentials and symmetry energy in infinite matter

    Get PDF
    We study the symmetry energy in infinite nuclear matter employing a non-relativistic Brueckner-Hartree-Fock approach and using various new nucleon-nucleon (NN) potentials, which fit np and pp scattering data very accurately. The potential models we employ are the recent versions of the Nijmegen group, Nijm-I, Nijm-II and Reid93, the Argonne V18V_{18} potential and the CD-Bonn potential. All these potentials yield a symmetry energy which increases with density, resolving a discrepancy that existed for older NN potentials. The origin of remaining differences is discussed.Comment: 17 pages, 10 figures included, elsevier latex style epsart.st

    dd3Hendd\to {^3}He n reaction at intermediate energies

    Full text link
    The dd3Hendd\to ^3He n reaction is considered at the energies between 200 MeV and 520 MeV. The Alt-Grassberger-Sandhas equations are iterated up to the lowest order terms over the nucleon-nucleon t-matrix. The parameterized 3He{^3He} wave function including five components is used. The angular dependence of the differential cross section and energy dependence of tensor analyzing power T20T_{20} at the zero scattering angle are presented in comparison with the experimental data
    corecore