137 research outputs found

    Whole-genome sequencing of bladder cancers reveals somatic CDKN1A mutations and clinicopathological associations with mutation burden

    Get PDF
    Bladder cancers are a leading cause of death from malignancy. Molecular markers might predict disease progression and behaviour more accurately than the available prognostic factors. Here we use whole-genome sequencing to identify somatic mutations and chromosomal changes in 14 bladder cancers of different grades and stages. As well as detecting the known bladder cancer driver mutations, we report the identification of recurrent protein-inactivating mutations in CDKN1A and FAT1. The former are not mutually exclusive with TP53 mutations or MDM2 amplification, showing that CDKN1A dysfunction is not simply an alternative mechanism for p53 pathway inactivation. We find strong positive associations between higher tumour stage/grade and greater clonal diversity, the number of somatic mutations and the burden of copy number changes. In principle, the identification of sub-clones with greater diversity and/or mutation burden within early-stage or low-grade tumours could identify lesions with a high risk of invasive progression

    Cost-utility analysis of four WHO-recommended sofosbuvir-based regimens for the treatment of chronic hepatitis C in sub-Saharan Africa

    Get PDF
    Background Although direct-acting antivirals (DAA) have become standard care for patients with chronic hepatitis C worldwide, there is no evidence for their value for money in sub-Saharan Africa. We assessed the cost-effectiveness of four sofosbuvir-based regimens recommended by the World Health Organization (WHO) in Cameroon, Côte d’Ivoire and Senegal. Methods Using modelling, we simulated chronic hepatitis C progression with and without treatment in hypothetical cohorts of patients infected with the country’s predominant genotypes (1, 2 and 4) and without other viral coinfections, history of liver complication or hepatocellular carcinoma. Using the status-quo ‘no DAA treatment’ as a comparator, we assessed four regimens: sofosbuvir-ribavirin, sofosbuvir-ledipasvir (both recommended in WHO 2016 guidelines and assessed in the TAC pilot trial conducted in Cameroon, Côte d’Ivoire and Senegal), sofosbuvir-daclatasvir and sofosbuvir-ledipasvir (two pangenotypic regimens recommended in WHO 2018 guidelines). DAA effectiveness, costs and utilities were mainly estimated using data from the TAC pilot trial. Secondary data from the literature was used to estimate disease progression probabilities with and without treatment. We considered two DAA pricing scenarios: S1) originator prices; S2) generic prices. Uncertainty was addressed using probabilistic and deterministic sensitivity analyses and cost-effectiveness acceptability curves. Results With slightly higher effectiveness and significantly lower costs, sofosbuvir/velpatasvir was the preferred DAA regimen in S1 with incremental cost-effectiveness ratios (ICERs) ranging from US526toUS526 to US632/QALY. At the cost-effectiveness threshold (CET) of 0.5 times the 2017 country’s per-capita gross domestic product (GDP), sofosbuvir/velpatasvir was only cost-effective in Senegal (probability > 95%). In S2 at generic prices, sofosbuvir/daclatasvir was the preferred regimen due to significantly lower costs. ICERs ranged from US139toUS139 to US216/QALY according to country i.e. a 95% probability of being cost-effective. Furthermore, this regimen was cost-effective (probability> 95%) for all CET higher than US281/QALY,US281/QALY, US223/QALY and US$195/QALY in Cameroon, Côte d’Ivoire and Senegal, respectively, corresponding to 0.14 (Côte d’Ivoire and Senegal) and 0.2 (Cameroon) times the country’s per-capita GDP. Conclusions Generic sofosbuvir/daclatasvir is very cost-effective for treating chronic hepatitis C in sub-Saharan Africa. Large-scale use of generics and an increase in national and international funding for hepatitis C treatment must be priorities for the HCV elimination agenda

    Molecular Cloning and Characterization of Two Genes Encoding Dihydroflavonol-4-Reductase from Populus trichocarpa

    Get PDF
    Dihydroflavonol 4-reductase (DFR, EC 1.1.1.219) is a rate-limited enzyme in the biosynthesis of anthocyanins and condensed tannins (proanthocyanidins) that catalyzes the reduction of dihydroflavonols to leucoanthocyanins. In this study, two full-length transcripts encoding for PtrDFR1 and PtrDFR2 were isolated from Populus trichocarpa. Sequence alignment of the two PtrDFRs with other known DFRs reveals the homology of these genes. The expression profile of PtrDFRs was investigated in various tissues of P. trichocarpa. To determine their functions, two PtrDFRs were overexpressed in tobacco (Nicotiana tabacum) via Agrobacterium-mediated transformation. The associated color change in the flowers was observed in all 35S:PtrDFR1 lines, but not in 35S:PtrDFR2 lines. Compared to the wild-type control, a significantly higher accumulation of anthocyanins was detected in transgenic plants harboring the PtrDFR1. Furthermore, overexpressing PtrDFR1 in Chinese white poplar (P. tomentosa Carr.) resulted in a higher accumulation of both anthocyanins and condensed tannins, whereas constitutively expressing PtrDFR2 only improved condensed tannin accumulation, indicating the potential regulation of condensed tannins by PtrDFR2 in the biosynthetic pathway in poplars

    No topoisomerase I alteration in a neuroblastoma model with in vivo acquired resistance to irinotecan

    Get PDF
    CPT-11 (irinotecan) is a DNA-topoisomerase I inhibitor with preclinical activity against neuroblastoma (NB) xenografts. The aim was to establish in vivo an NB xenograft resistant to CPT-11 in order to study the resistance mechanisms acquired in a therapeutic setting. IGR-NB8 is an immature NB xenograft with MYCN amplification and 1p deletion, which is sensitive to CPT-11. Athymic mice bearing advanced-stage subcutaneous tumours were treated with CPT-11 (27 mg kg−1 day−1 × 5) every 21 days (1 cycle) for a maximum of four cycles. After tumour regrowth, a new in vivo passage was performed and the CPT-11 treatment was repeated. After the third passage, a resistant xenograft was obtained (IGRNB8-R). The tumour growth delay (TGD) was reduced from 115 at passage 1 to 40 at passage 4 and no complete or partial regression was observed. After further exposure to the drug, up to 28 passages, the resistant xenograft was definitively established with a TGD from 17 at passage 28. Resistant tumours reverted to sensitive tumours after 15 passages without treatment. IGR-NB8-R remained sensitive to cyclophosphamide and cisplatin and cross-resistance was observed with the topoisomerase I inhibitor topotecan. No quantitative or qualitative topoisomerase I modifications were observed. The level of expression of multidrug resistance 1 (MDR1), MDR-associated protein 1 (MRP1) and, breast cancer resistance protein, three members of the ATP-binding cassette transporter family was not modified over passages. Our results suggest a novel resistance mechanism, probably not involving the mechanisms usually observed in vitro

    Blockage of angiotensin II type I receptor decreases the synthesis of growth factors and induces apoptosis in C6 cultured cells and C6 rat glioma

    Get PDF
    Angiotensin II (Ang II) is a main effector peptide in the renin–angiotensin system and participates in the regulation of vascular tone. It also has a role in the expression of growth factors that induce neovascularisation which is closely associated to the growth of malignant gliomas. We have shown that the selective blockage of the AT1 receptor of angiotensin inhibites tumour growth, cell proliferation and angiogenesis of C6 rat glioma. The aim of this study was to study the effects of the blockage of AT1 receptor on the synthesis of growth factors, and in the genesis of apoptosis in cultured C6 glioma cells and in rats with C6 glioma. Administration of losartan at doses of 40 or 80 mg kg−1 to rats with C6 glioma significantly decreased tumoral volume and production of platelet-derived growth factor, vascular endothelial growth factor and basic fibroblast growth factor. It also induced apoptosis in a dose-dependent manner. Administration of Ang II increased cell proliferation of cultured C6 cells which decreased by the administration of losartan. Our results suggest that the selective blockage of AT1 diminishes tumoral growth through inhibition of growth factors and promotion of apoptosis

    ERYTHROPOIETIN FOR THE TREATMENT OF SUBARACHNOID HEMORRAGE: A FEASIBLE INGREDIENT FOR A SUCCESS MEDICAL RECIPE

    Get PDF
    Subaracnhoid hemorrage (SAH) following aneurysm bleeding accounts for 6% to 8% of all cerebrovascular accidents. Althoug an aneurysm can be effectively managed by surgery or endovascular therapy, delayed cerebral ischemia is diagnosed in a high percentage of patients resulting in significant morbility and mortality. Cerebral vasospasm occurs in more than half of all patients after aneurysm rupture and is recognized as the leading cause of delayed cerebral ischemia after SAH. Hemodynamic strategies and endovascular procedures may be considered fo the treatment of cerebral vasospasm. In recent years, the mechanism contributing to the development of vasospasm, abnormal reactivity of cerebral arteries and cerebral ischemia following SAH, have been intensively investigated. A number of pathological processes have been identified in the pathogenesis of vasospasm including endothelial injury, smooth muscle cell contraction from spasmogenic substances produced by the subarachnoid blood clots, changes in vascular responsiveness and inflammatory response of the vascular endothelium. to date, the current therapeutic interventions remain ineffective being limited to the manipulation os systemic blood pressure, variation of blood volume and viscosity, and control of arterial carbon dioxide tension. In this scenario, the hormone erythropoietin (EPO), has been found to exert neuroprotective action during experimental SAH when its recombinant form (rHuEPO) is systematically administered. However, recent translation of experimental data into clinical trials has suggested an unclear role of recombinant human EPO in the setting of SAH. In this context, the aim of the recurrent review is to present current evidence on the potential role of EPO in cerebrovascular dysfunction following aneurysmal subarachnoid hemorrage

    Role of Interaction and Nucleoside Diphosphate Kinase B in Regulation of the Cystic Fibrosis Transmembrane Conductance Regulator Function by cAMP-Dependent Protein Kinase A

    Get PDF
    Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent protein kinase A (PKA) and ATP-regulated chloride channel. Here, we demonstrate that nucleoside diphosphate kinase B (NDPK-B, NM23-H2) forms a functional complex with CFTR. In airway epithelia forskolin/IBMX significantly increases NDPK-B co-localisation with CFTR whereas PKA inhibitors attenuate complex formation. Furthermore, an NDPK-B derived peptide (but not its NDPK-A equivalent) disrupts the NDPK-B/CFTR complex in vitro (19-mers comprising amino acids 36-54 from NDPK-B or NDPK-A). Overlay (Far-Western) and Surface Plasmon Resonance (SPR) analysis both demonstrate that NDPK-B binds CFTR within its first nucleotide binding domain (NBD1, CFTR amino acids 351-727). Analysis of chloride currents reflective of CFTR or outwardly rectifying chloride channels (ORCC, DIDS-sensitive) showed that the 19-mer NDPK-B peptide (but not its NDPK-A equivalent) reduced both chloride conductances. Additionally, the NDPK-B (but not NDPK-A) peptide also attenuated acetylcholine-induced intestinal short circuit currents. In silico analysis of the NBD1/NDPK-B complex reveals an extended interaction surface between the two proteins. This binding zone is also target of the 19-mer NDPK-B peptide, thus confirming its capability to disrupt NDPK-B/CFTR complex. We propose that NDPK-B forms part of the complex that controls chloride currents in epithelia

    Mechanisms and therapeutic applications of electromagnetic therapy in Parkinson's disease

    Get PDF
    © 2015 Vadalà et al. Electromagnetic therapy is a non-invasive and safe approach for the management of several pathological conditions including neurodegenerative diseases. Parkinson's disease is a neurodegenerative pathology caused by abnormal degeneration of dopaminergic neurons in the ventral tegmental area and substantia nigra pars compacta in the midbrain resulting in damage to the basal ganglia. Electromagnetic therapy has been extensively used in the clinical setting in the form of transcranial magnetic stimulation, repetitive transcranial magnetic stimulation, high-frequency transcranial magnetic stimulation and pulsed electromagnetic field therapy which can also be used in the domestic setting. In this review, we discuss the mechanisms and therapeutic applications of electromagnetic therapy to alleviate motor and non-motor deficits that characterize Parkinson's disease

    NM23 proteins: innocent bystanders or local energy boosters for CFTR?

    Get PDF
    NM23 proteins NDPK-A and -B bind to the cystic fibrosis (CF) protein CFTR in different ways from kinases such as PKA, CK2 and AMPK or linkers to cell calcium such as calmodulin and annexins. NDPK-A (not -B) interacts with CFTR through reciprocal AMPK binding/control, whereas NDPK-B (not -A) binds directly to CFTR. NDPK-B can activate G proteins without ligand-receptor coupling, so perhaps NDPK-B's binding influences energy supply local to a nucleotide-binding site (NBD1) needed for CFTR to function. Curiously, CFTR (ABC-C7) is a member of the ATP-binding cassette (ABC) protein family that does not obey 'clan rules'; CFTR channels anions and is not a pump, regulates disparate processes, is itself regulated by multiple means and is so pleiotropic that it acts as a hub that orchestrates calcium signaling through its consorts such as calmodulin/annexins. Furthermore, its multiple partners make CFTR dance to different tunes in different cellular and subcellular locations as it recycles from the plasma membrane to endosomes. CFTR function in airway apical membranes is inhibited by smoking which has been dubbed 'acquired CF'. CFTR alone among family members possesses a trap for other proteins that it unfurls as a 'fish-net' and which bears consensus phosphorylation sites for many protein kinases, with PKA being the most canonical. Recently, the site of CFTR's commonest mutation has been proposed as a knock-in mutant that alters allosteric control of kinase CK2 by log orders of activity towards calmodulin and other substrates after CFTR fragmentation. This link from CK2 to calmodulin that binds the R region invokes molecular paths that control lumen formation, which is incomplete in the tracheas of some CF-affected babies. Thus, we are poised to understand the many roles of NDPK-A and -B in CFTR function and, especially lumen formation, which is defective in the gut and lungs of many CF babies
    • …
    corecore