84 research outputs found

    Assessment of power spectral density of microvascular hemodynamics in skeletal muscles at very low and low-frequency via near-infrared diffuse optical spectroscopies

    Get PDF
    In this work, we used a hybrid time domain near-infrared spectroscopy (TD-NIRS) and diffuse correlation spectroscopy (DCS) device to retrieve hemoglobin and blood flow oscillations of skeletal muscle microvasculature. We focused on very low (VLF) and low-frequency (LF) oscillations (i.e., frequency lower than 0.145 Hz), that are related to myogenic, neurogenic and endothelial activities. We measured power spectral density (PSD) of blood flow and hemoglobin concentration in four muscles (thenar eminence, plantar fascia, sternocleidomastoid and forearm) of 14 healthy volunteers to highlight possible differences in microvascular hemodynamic oscillations. We observed larger PSDs for blood flow compared to hemoglobin concentration, in particular in case of distal muscles (i.e., thenar eminence and plantar fascia). Finally, we compared the PSDs measured on the thenar eminence of healthy subjects with the ones measured on a septic patient in the intensive care unit: lower power in the endothelial-dependent frequency band, and larger power in the myogenic ones were observed in the septic patient, in accordance with previous works based on laser doppler flowmetry

    A multi-laboratory comparison of photon migration instruments and their performances – the BitMap Exercise

    Get PDF
    Performance assessment and standardization are indispensable for instruments of clinical relevance in general and clinical instrumentation based on photon migration/diffuse optics in particular. In this direction, a multi-laboratory exercise was initiated with the aim of assessing and comparing their performances. 29 diffuse optical instruments belonging to 11 partner institutions of a European level Marie Curie Consortium BitMap1 were considered for this exercise. The enrolled instruments covered different approaches (continuous wave, CW; frequency domain, FD; time domain, TD and spatial frequency domain imaging, SFDI) and applications (e.g. mammography, oximetry, functional imaging, tissue spectroscopy). 10 different tests from 3 well-accepted protocols, namely, the MEDPHOT2, the BIP3, and the nEUROPt4 protocols were chosen for the exercise and the necessary phantoms kits were circulated across labs and institutions enrolled in the study. A brief outline of the methodology of the exercise is presented here. Mainly, the design of some of the synthetic descriptors, (single numeric values used to summarize the result of a test and facilitate comparison between instruments) for some of the tests will be discussed.. Future actions of the exercise aim at deploying these measurements onto an open data repository and investigating common analysis tools for the whole dataset

    JAK inhibition reduces SARS-CoV-2 liver infectivity and modulates inflammatory responses to reduce morbidity and mortality

    Get PDF
    Using AI, we identified baricitinib as having antiviral and anticytokine efficacy. We now show a 71% (95% CI 0.15 to 0.58) mortality benefit in 83 patients with moderate-severe SARS-CoV-2 pneumonia with few drug-induced adverse events, including a large elderly cohort (median age, 81 years). An additional 48 cases with mild-moderate pneumonia recovered uneventfully. Using organotypic 3D cultures of primary human liver cells, we demonstrate that interferon-α2 increases ACE2 expression and SARS-CoV-2 infectivity in parenchymal cells by greater than fivefold. RNA-seq reveals gene response signatures associated with platelet activation, fully inhibited by baricitinib. Using viral load quantifications and superresolution microscopy, we found that baricitinib exerts activity rapidly through the inhibition of host proteins (numb-associated kinases), uniquely among antivirals. This reveals mechanistic actions of a Janus kinase-1/2 inhibitor targeting viral entry, replication, and the cytokine storm and is associated with beneficial outcomes including in severely ill elderly patients, data that incentivize further randomized controlled trials

    A major grain protein content locus on barley (Hordeum vulgare L.) chromosome 6 influences flowering time and sequential leaf senescence

    Get PDF
    Timing of various developmental stages including anthesis and whole-plant (‘monocarpic’) senescence influences yield and quality of annual crops. While a correlation between flowering/seed filling and whole-plant senescence has been observed in many annuals, it is unclear how the gene networks controlling these processes interact. Using near-isogenic germplasm, it has previously been demonstrated that a grain protein content (GPC) locus on barley chromosome 6 strongly influences the timing of post-anthesis flag leaf senescence, with high-GPC germplasm senescing early. Here, it is shown that the presence of high-GPC allele(s) at this locus also accelerates pre-anthesis plant development. While floral transition at the shoot apical meristem (SAM; determined by the presence of double ridges) occurred simultaneously, subsequent development was faster in the high- than in the low-GPC line, and anthesis occurred on average 5 d earlier. Similarly, sequential (pre-anthesis) leaf senescence was slightly accelerated, but only after differences in SAM development became visible. Leaf expression levels of four candidate genes (from a list of genes differentially regulated in post-anthesis flag leaves) were much higher in the high-GPC line even before faster development of the SAM became visible. One of these genes may be a functional homologue of Arabidopsis glycine-rich RNA-binding protein 7, which has previously been implicated in the promotion of flowering. Together, the data establish that the GPC locus influences pre- and post-anthesis barley development and senescence, and set the stage for a more detailed analysis of the interactions between the molecular networks controlling these important life history traits
    • …
    corecore