4 research outputs found

    Tracing the sources, fate, and recycling of fine sediments across a river-delta interface

    Get PDF
    Deltaic floodplains are thought to be long-term depositional environments, however there remains a limited understanding regarding timescales of depositional and erosional events, sediment delivery pathways and sediment storage. This study uses sediment concentration and sediment fingerprinting to examine the contribution of surface and subsurface sources to suspended sediment transiting the Lower Roanoke River, North Carolina, United States. The Lower Roanoke is disconnected from its high-gradient uplands in the Piedmont and Appalachian Mountains by a series of dams, which effectively restricts suspended sediment delivery from the headwaters. Accordingly, sediments from the Lower Roanoke River basin are the primary source of suspended sediment downstream of the dams. The fingerprinting method utilized fallout radionuclide tracers (210Pbxs and 137Cs) to examine the spatial variation of sediment-source contributions to suspended-sediment samples (n = 79). Three end-member sources were sampled: 1. surface sources (floodplains and topsoils; n = 60), 2. subsurface sources (channel bed and banks; n = 66), and 3. deltaic sources (delta front and prodelta; n = 11). The results demonstrate that with decreasing river slope and increasing influence of estuarine-driven flow dynamics, the relative contribution of surface sediments to the suspended-sediment load increases from 20% (± 2%) in the upper reach, to 67% (± 1%) in the Roanoke bayhead delta (BHD). At the river mouth, the surface-sediment contribution decreases, and the delta front and prodelta sediments contribute 74% (± 1%) to the suspended load. These results indicate, that during the delta transgression, erosion of the lower delta provides an additional source of sediment to the upper delta. At the same time, the lower deltaic plain, considered a sediment sink and long-term sediment-storage site, becomes erosional. The lower river and distributary network of the delta plain, which were thought to only disperse sediments in a seaward direction, may also have an important landward-directed sediment-dispersal component that provides nourishment and fortification to the upper BHD, at the cost of the eroding lower delta. Recognition of these contrasting sediment pathways in the Roanoke River highlights that these complex bidirectional processes may exist in other eroding deltas. Understanding these bidirectional processes will be necessary for the ongoing management of deltaic environments under increasing anthropogenic stress such as land use change and accelerating sea-level rise

    Tracing nitrate sources with a combined isotope approach (δ15NNO3, δ18ONO3 and δ11B) in a large mixed-use watershed in southern Alberta, Canada

    No full text
    Rapid population growth and land-use intensification over the last century have resulted in a substantial increase in nutrient loads degrading marine and freshwater ecosystems worldwide. In mixed-use watersheds, elevated nitrogen loads from wastewater treatment plant (WWTP) effluent or agricultural runoff often drive the eutrophication of waterways. Accordingly, the objective of this research was to identify sources of riverine nitrate (NO3), a deleterious dissolved species of nitrogen, with a combined isotopic tracing technique in the Bow River and the Oldman River in Alberta, Canada. Riverine NO3 and boron (B) concentrations, mean daily flux and δ15NNO3, δ18ONO3, and δ11B values were determined at 17 mainstem sites during high and low discharge periods in 2014 and 2015. The data for mainstem sites were then compared to results for effluent from seven WWTPs, eight synthetic fertilizers, cow manure, and three predominantly agricultural tributary sites to estimate point and non-point NO3 sources. The NO3 flux, δ15NNO3 and δ18ONO3 values indicated the city of Calgary’s Bonnybrook WWTP effluent accounts for the majority of the NO3 flux in the Bow River downstream of Calgary. δ15NNO3 and δ11B values in the Bow River highlighted an increase in agricultural NO3 loading downstream of irrigation return-flows. A three-fold decrease in the NO3:B flux ratio indicated NO3-removal processes are active in the lower reaches of the Bow River. For the Oldman River, δ11B values revealed elevated nutrient loading from the Lethbridge WWTP effluent (10% of downstream B flux). Furthermore, the agricultural tributaries contributed 25% of the local B flux to the Oldman River. Overall, δ11B was proven to be an effective co-tracer for discriminating between urban and agricultural sources of NO3 in these large mixed-use watersheds. This combined isotope tracing approach has significant potential to identify point and non-point NO3 sources driving eutrophication around the world

    Modification of 137^{137}Cs transfer to rape (Brassica napusBrassica\ napus L.) phytomass under the influence of soil microorganisms

    No full text
    International audienceAfter nuclear accidents, such as those experienced in Chernobyl and Fukushima, microorganisms may help purify contaminated soils by changing the mobility of radionuclides and their availability for plants by altering the physical and chemical properties of the substrate. Here, using model experiments with quartz sand as a substrate we investigate the influence of microorganisms on 137Cs transfer from substrate to plants. The highest transition of 137Cs from substrate to plants (50% increase compared to the control) was observed after Brassica napus L. seeds were inoculated by Azotobacter chroococcum. The best results for reducing the accumulation of 137Cs radionuclides (30% less) were noted after the inoculation by Burkholderia sp.. Furthermore, Bacillus megaterium demonstrated an increased ability to accumulate 137Cs. This research improves our prediction of the behavior of radionuclides in soil and may contribute towards new, microbiological countermeasures for soil remediation following nuclear accidents
    corecore