3,807 research outputs found

    Improving the RST-OIL algorithm for oil spill detection under severe sun glint conditions

    Get PDF
    In recent years, the risk related to oil spill accidents has significantly increased due to a global growth in offshore extraction and oil maritime transport. To ensure sea safety, the implementation of a monitoring system able to provide real-time coverage of large areas and a timely alarm in case of accidents is of major importance. Satellite remote sensing, thanks to its inherent peculiarities, has become an essential component in such a system. Recently, the general Robust Satellite Technique (RST) approach has been successfully applied to oil spill detection (RST-OIL) using optical band satellite data. In this paper, an advanced configuration of RST-OIL is presented, and we aim to extend its applicability to a larger set of observation conditions, referring, in particular, to those in the presence of severe sun glint effects that generate some detection limits to the RST-OIL standard algorithm. To test such a configuration, the DeepWater Horizon platform accident from April 2010 was selected as a test case. We analyzed a time series of Moderate Resolution Imaging Spectroradiometer (MODIS) images that are usually significantly affected by sun glint in the Gulf of Mexico area. The accuracy of the achieved results was evaluated for comparison with a well-established satellite methodology based on microwave data, which confirms the potential of the proposed approach in identifying the oil presence on the scene with good accuracy and reliability, even in these severe conditions

    EXPERIMENTAL STUDY WITH DIFFERENT STRATEGIES AND AIR-DILUTION USING OPTICAL SI ENGINE FUELED WITH HYDRATED ETHANOL

    Get PDF
    Several dilution conditions techniques are used in internal combustion engines to increase fuel economy and reduce pollutant emissions, primarily nitrogen oxide (NOX), which are generated by the thermal pathway. Among the techniques, we can highlight air dilution (lean combustion) and exhaust gas recirculation (EGR). The control of these operations using different types of fuels and biofuels and their peculiarities, are of fundamental importance to remove the maximum efficiency from the process, generating the lowest level of emission and respecting the current legislation. Although several studies have achieved interesting results for reducing emissions and knocks thanks to the dilution of the air, it has been observed that the diluent without oxygen is more efficient. Although air dilution has a slightly lesser effect than EGR, this mode of operation can help to understand the dynamics of engine load dilution, mainly due to the complexity of EGR tests on research engines. Therefore, as a background, tests were carried out experimentally with air dilution in order to understand the behavior for the prediction of future tests with EGR. The tests were performed with hydrated ethanol and speeds of 1500 rpm and 2500 rpm. It was possible to observe that with increasing dilution, there is a gradual increase in the variability of the burn and its displacement to the region close to the inlet valve. It was observed that the dilution provided a decrease in the formation of NOX and CO and an increase in hydrocarbon emissions. Increased rotation due to increased turbulence causes changes in emission values

    Monitoring soil wetness variations by means of satellite passive microwave observations: the HYDROPTIMET study cases

    No full text
    International audienceSoil moisture is an important component of the hydrological cycle. In the framework of modern flood warning systems, the knowledge of soil moisture is crucial, due to the influence on the soil response in terms of infiltration-runoff. Precipitation-runoff processes, in fact, are related to catchment's hydrological conditions before the precipitation. Thus, an estimation of these conditions is of significant importance to improve the reliability of flood warning systems. Combining such information with other weather-related satellite products (i.e. rain rate estimation) might represent a useful exercise in order to improve our capability to handle (and possibly mitigate or prevent) hydro-geological hazards. Remote sensing, in the last few years, has supported several techniques for soil moisture/wetness monitoring. Most of the satellite-based techniques use microwave data, thanks to the all-weather and all-time capability of these data, as well as to their high sensitivity to water content in the soil. On the other hand, microwave data are unfortunately highly affected by the presence of surface roughness or vegetation coverage within the instantaneous satellite field of view (IFOV). Those problems, consequently, strongly limit the efficiency and the reliability of traditional satellite techniques. Recently, using data coming from AMSU (Advanced Microwave Sounding Unit), flying aboard NOAA (National Oceanic and Atmospheric Administration) satellites, a new methodology for soil wetness estimation has been proposed. The proposed index, called Soil Wetness Variation Index (SWVI), developed by a multi-temporal analysis of AMSU records, seems able to reduce the problems related to vegetation and/or roughness effects. Such an approach has been tested, with promising results, on the analysis of some flooding events which occurred in Europe in the past. In this study, results achieved for the HYDROPTIMET test cases will be analysed and discussed in detail. This analysis allows us to evaluate the reliability and the efficiency of the proposed technique in identifying different amounts of soil wetness variations in different observational conditions. In particular, the proposed indicator was able to document the actual effects of meteorological events, in terms of space-time evolution of soil wetness changes, for all the analysed HYDROPTIMET test cases. Moreover, in some circumstances, the SWVI was able to identify the presence of a sort of "early" signal in terms of soil wetness variations, which may be regarded as a timely indication of an anomalous value of soil water content. This evidence suggests the opportunity to use such an index in the pre-operational phases of the modern flood warning systems, in order to improve their forecast capabilities and their reliability

    Assessing the potential of <i>SWVI</i> (Soil Wetness Variation Index) for hydrological risk monitoring by means of satellite microwave observations

    No full text
    International audienceIn the last years satellite remote sensing applications in hydrology have considerably progressed. A new multi-temporal satellite data-analysis approach has been recently suggested in order to estimate space-time changes of geophysical parameters possibly related to the increase of environmental and hydro-geological hazards. Such an approach has been already used both for flooded area mapping (using AVHRR data) and for soil wetness index estimation (using AMSU data). In this work, a preliminary sensitivity analysis of the proposed Soil Wetness Variation Index (SWVI) is made in the case of low intensity meteorological events by the comparison with hydrological (precipitation) data. This analysis, as a first step of a more complex work in progress, is targeted to a first evaluation of the reliability of the SWVI in describing soil response to precipitations of different duration and intensity

    Modeling and multi-temporal characterization of total suspended matter by the combined use of sentinel 2-MSI and landsat 8-OLI Data: The Pertusillo lake case study (Italy)

    Get PDF
    The total suspended matter (TSM) variability plays a crucial role in a lake's ecological functioning and its biogeochemical cycle. Sentinel-2A MultiSpectral Instrument (MSI) and Landsat 8 Operational Land Instrument (OLI) data offer unique opportunities for investigating certain in-water constituents (e.g., TSM and chlorophyll-a) owing to their spatial resolution (10-60 m). In this framework, we assessed the potential of MSI-OLI combined data in characterizing the multi-temporal (2014-2018) TSM variability in Pertusillo Lake (Basilicata region, Southern Italy). We developed and validated a customized MSI-based TSM model (R2 = 0.81) by exploiting ground measurements acquired during specific measurement campaigns. The model was then exported as OLI data through an intercalibration procedure (R2 = 0.87), allowing for the generation of a TSM multi-temporal MSI-OLI merged dataset. The analysis of the derived multi-year TSM monthly maps showed the influence of hydrological factors on the TSM seasonal dynamics over two sub-regions of the lake, the west and east areas. The western side is more influenced by inflowing rivers and water level fluctuations, the effects of which tend to longitudinally decrease, leading to less sediment within the eastern sub-area. The achieved results can be exploited by regional authorities for better management of inland water quality and monitoring systems

    Monitoring soil wetness variations by means of satellite passive microwave observations: the HYDROPTIMET study cases

    Get PDF
    Soil moisture is an important component of the hydrological cycle. In the framework of modern flood warning systems, the knowledge of soil moisture is crucial, due to the influence on the soil response in terms of infiltration-runoff. Precipitation-runoff processes, in fact, are related to catchment's hydrological conditions before the precipitation. Thus, an estimation of these conditions is of significant importance to improve the reliability of flood warning systems. Combining such information with other weather-related satellite products (i.e. rain rate estimation) might represent a useful exercise in order to improve our capability to handle (and possibly mitigate or prevent) hydro-geological hazards. <P style='line-height: 20px;'> Remote sensing, in the last few years, has supported several techniques for soil moisture/wetness monitoring. Most of the satellite-based techniques use microwave data, thanks to the all-weather and all-time capability of these data, as well as to their high sensitivity to water content in the soil. On the other hand, microwave data are unfortunately highly affected by the presence of surface roughness or vegetation coverage within the instantaneous satellite field of view (IFOV). Those problems, consequently, strongly limit the efficiency and the reliability of traditional satellite techniques. <P style='line-height: 20px;'> Recently, using data coming from AMSU (Advanced Microwave Sounding Unit), flying aboard NOAA (National Oceanic and Atmospheric Administration) satellites, a new methodology for soil wetness estimation has been proposed. The proposed index, called Soil Wetness Variation Index (<I>SWVI</I>), developed by a multi-temporal analysis of AMSU records, seems able to reduce the problems related to vegetation and/or roughness effects. Such an approach has been tested, with promising results, on the analysis of some flooding events which occurred in Europe in the past. <P style='line-height: 20px;'> In this study, results achieved for the HYDROPTIMET test cases will be analysed and discussed in detail. This analysis allows us to evaluate the reliability and the efficiency of the proposed technique in identifying different amounts of soil wetness variations in different observational conditions. In particular, the proposed indicator was able to document the actual effects of meteorological events, in terms of space-time evolution of soil wetness changes, for all the analysed HYDROPTIMET test cases. Moreover, in some circumstances, the <I>SWVI</I> was able to identify the presence of a sort of 'early' signal in terms of soil wetness variations, which may be regarded as a timely indication of an anomalous value of soil water content. This evidence suggests the opportunity to use such an index in the pre-operational phases of the modern flood warning systems, in order to improve their forecast capabilities and their reliability

    Imaging findings in 14 dogs and 3 cats with lobar emphysema

    Get PDF
    Abstract Background Lobar emphysema in dogs and cats is caused by bronchial collapse during expiration and subsequent air trapping. Congenital causes such as bronchial cartilage defects or acquired causes such as compressive neoplastic lesions have been reported. Morbidity results from hyperinflation of the affected lung lobe and compression of adjacent thoracic structures. Objective To describe patient characteristics and imaging findings in dogs and cats with lobar emphysema. Animals Fourteen dogs and 3 cats with lobar emphysema diagnosed by imaging findings were retrospectively identified from veterinary referral hospital populations over a 10‐year period. Methods Cases that included thoracic radiography, thoracic computed tomography (CT), or both were included. All images were reviewed by a European College of Veterinary Diagnostic Imaging diplomate. Relevant case information included signalment, clinical findings, treatment, and histopathology where available. Results Ten of 17 (59%) patients were presented for evaluation of dyspnea and 6 (35%) for coughing. Eleven (65%) patients were <3 years of age. The right middle lung lobe was affected in 12 cases (71%) and multiple lobes were affected in 7 cases (41%). Congenital lobar emphysema was suspected in 14 cases (82%). Conclusion and Clinical Importance Lung lobe hyperinflation, atelectasis of nonaffected lung lobes, mediastinal shift, and thoracic wall and diaphragmatic wall deformation were common findings. Lobar or multilobar emphysema should be considered in patients with dyspnea or coughing, particularly younger patients. Although radiography is useful, CT provides better detail. In older patients, acquired causes of bronchial compression should be considered

    Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion.

    Get PDF
    Twenty endophytic bacteria were isolated from the meristematic tissues of three varieties of strawberry cultivated in vitro, and further identified, by FAME profile, into the genera Bacillus and Sphingopyxis. The strains were also characterized according to indole acetic acid production, phosphate solubilization and potential for plant growth promotion. Results showed that 15 strains produced high levels of IAA and all 20 showed potential for solubilizing inorganic phosphate. Plant growth promotion evaluated under greenhouse conditions revealed the ability of the strains to enhance the root number, length and dry weight and also the leaf number, petiole length and dry weight of the aerial portion. Seven Bacillus spp. strains promoted root development and one strain of Sphingopyxis sp. promoted the development of plant shoots. The plant growth promotion showed to be correlated to IAA production and phosphate solubilization. The data also suggested that bacterial effects could potentially be harnessed to promote plant growth during seedling acclimatization in strawberr

    The first level muon trigger in the central toroid of the ATLAS experiment

    Get PDF
    We present the design of the first level muon trigger in the central toroid of the ATLAS experiment at the Large Hadron Collider (LHC). A trigger is foreseen based on fast, finely segmented gaseous detectors, Resistive Plate Chambers (RPC), to unambiguously identify the interaction bunch crossing. We describe the detectors and the logic scheme of the trigger. © 1995
    corecore