72 research outputs found

    The Paraldor Project

    Get PDF
    Paraldor is an experiment in bringing the power of categorical languages to lattice QCD computations. Our target language is Aldor, which allows the capture of the mathematical structure of physics directly in the structure of the code using the concepts of categories, domains and their inter-relationships in a way which is not otherwise possible with current popular languages such as Fortran, C, C++ or Java. By writing high level physics code portably in Aldor, and implementing switchable machine dependent high performance back-ends in C or assembler, we gain all the power of categorical languages such as modularity, portability, readability and efficiency.Comment: 4 pages, 2 figures, Lattice 2002 conference proceeding

    Decays of mesons with charm quarks on the lattice

    Get PDF
    We investigate mesons containing charm quarks on fine lattices with a^{-1} \sim 5 GeV. The quenched approximation is employed using the Wilson gauge action at \beta = 6.6 and nonperturbatively O(a) improved Wilson quarks. We present results for decay constants using various interpolating fields and give preliminary results for form factors of semileptonic decays of D_s mesons to light pseudoscalar mesons.Comment: 7 pages, 3 figures, talk presented at the XXV International Symposium on Lattice Field Theory, 30 July - 4 August 2007, Regensburg, German

    Spectral Curves and Localization in Random Non-Hermitian Tridiagonal Matrices

    Get PDF
    Eigenvalues and eigenvectors of non-Hermitian tridiagonal periodic random matrices are studied by means of the Hatano-Nelson deformation. The deformed spectrum is annular-shaped, with inner radius measured by the complex Thouless formula. The inner bounding circle and the annular halo are stuctures that correspond to the two-arc and wings observed by Hatano and Nelson in deformed Hermitian models, and are explained in terms of localization of eigenstates via a spectral duality and the Argument principle.Comment: 5 pages, 9 figures, typographical error corrected in reference

    QCD dynamics in a constant chromomagnetic field

    Full text link
    We investigate the phase transition in full QCD with two flavors of staggered fermions in presence of a constant abelian chromomagnetic field. We find that the critical temperature depends on the strength of the chromomagnetic field and that the deconfined phase extends to very low temperatures for strong enough fields. As in the case of zero external field, a single transition is detected, within statistical uncertainties, where both deconfinement and chiral symmetry restoration take place. We also find that the chiral condensate increases with the strength of the chromomagnetic field.Comment: 18 pages, 8 figures, 1 tabl

    Semi-leptonic decays of heavy mesons and the Isgur-Wise function in quenched lattice QCD

    Get PDF
    The form factors for the semi-leptonic B->D and B->D* decays are evaluated in quenched lattice QCD at two different values of the coupling, beta=6.0 and 6.2. The action and the operators are fully O(a) non-perturbatively improved. The slope of the Isgur-Wise function is evaluated, and found to be rho^2=0.83^{+15+24}_{-11-1} (quoted errors are statistical and systematic respectively). Ratios of form factors are evaluated and compared to experimental determinations.Comment: 21 pages, 10 figure

    Semileptonic form factors D → \rightarrow π \pi , K and B → \rightarrow π \pi , K from a fine lattice

    Get PDF
    We extract the form factors relevant for semileptonic decays of D and B mesons from a relativistic computation on a fine lattice in the quenched approximation. The lattice spacing is a = 0.04 fm (corresponding to a -1 = 4.97 GeV), which allows us to run very close to the physical B meson mass, and to reduce the systematic errors associated with the extrapolation in terms of a heavy-quark expansion. For decays of D and Ds mesons, our results for the physical form factors at \ensuremath q^2 = 0 are as follows: \ensuremath f_+^{D\rightarrow\pi}(0) = 0.74(6)(4) , \ensuremath f_+^{D \rightarrow K}(0) = 0.78(5)(4) and \ensuremath f_+^{D_s \rightarrow K} (0) = 0.68(4)(3) . Similarly, for B and Bs we find \ensuremath f_+^{B\rightarrow\pi}(0) = 0.27(7)(5) , \ensuremath f_+^{B\rightarrow K} (0) = 0.32(6)(6) and \ensuremath f_+^{B_s\rightarrow K}(0) = 0.23(5)(4) . We compare our results with other quenched and unquenched lattice calculations, as well as with light-cone sum rule predictions, finding good agreemen

    Leading edge serrations for the reduction of aerofoil separation self-noise

    Get PDF
    This paper presents an experimental investigation into the use of LE serrations for the reduction of trailing edge self-noise, at least for the NACA-65 aerofoil family. It is shown that the leading edge serrations are able to reduce the self-noise in a low frequency range at small and negative angles of attack. The exact mechanism of this reduction is still not completely discovered, but the LE serrations are discovered able to modulate the mean velocity ïŹeld and turbulent velocity spectrum in that range of frequencies, as well as to dampen the eïŹ€ect of the angle of attack on the pressure ïŹeld and to reduce its coherence. We emphasise that this paper represents work in progress and further investigations are still necessary in order to completely understand the dynamics behind this reduction
    • 

    corecore